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This work considers the question of how convenient access to copious data impacts our ability to learn
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between causality and machine learning. This work points out on a case-by-case basis how big data facilitates,
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1 INTRODUCTION
Causality is a generic relationship between an effect and the cause that gives rise to it. It is hard to
define, and we often only know intuitively about causes and effects. Because it rained, the streets
were wet. Because the student did not study, he did poorly on the exam. Because the oven was
hot, the cheese melted on the pizza. When it comes to learning causality with data, we need to be
aware of the differences between statistical associations and causations. For example, when the
temperatures are hot, the owner of an ice cream shop may observe high electric bills and also high
sales. Accordingly, she would observe a strong association between the electric bill and the sales
figures, but the electric bill was not causing the high sales — leaving the lights on in the shop over
night would have no impact on sales. In this case, the outside temperature is the common cause
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of both the high electric bill and the high sales numbers, and we say that it is a confounder of the
causality of the electricity usage on the ice cream sales.

The ability to learn causality is considered as a significant component of human-level intelligence
and can serve as the foundation of AI [114]. Historically, learning causality has been studied in
a myriad of high-impact domains including education [36, 63, 65, 86], medical science [101, 109],
economics [74], epidemiology [64, 99, 127], meteorology [38], and environmental health [94].
Limited by the amount of data, solid prior causal knowledge was necessary for learning causality.
Researchers performed studies on data collected through carefully designed experiments where
solid prior causal knowledge is of vital importance [63]. Taking the randomized controlled trials
as an example [32], to study the efficacy of a drug, a patient would be randomly assigned to take
the drug or not, which would guarantee that — on average — the treated group and the un-treated
(control) groups are equivalent in all relevant respects, while ruling out the influence of any other
factors. Then, the impact of the drug on some health outcome — say, the duration of a migraine —
can be measured by comparing the average outcome of the two groups.

The purpose of this survey is to consider what new possibilities and challenges arise for learning
about causality in the era of big data. As an example, consider that the possibility of unmeasured
confounders might be mitigated by the fact that a large number of features can be measured. So,
first, we aim to answer causal questions using big data. For example, do positive Yelp1 reviews
drive customers to restaurants, or do they merely reflect popularity? This causal question can be
addressed with data from an extensive database of Yelp. Second, answering causal questions with
big data leads to some unique new problems. For example, public databases or data collected via
web crawling or application program interfaces (APIs) are unprecedentedly large, we have little
intuition about what types of bias a dataset can suffer from — the more plentiful data makes it more
mysterious and, therefore, harder to model responsibly. At the same time, causal investigation is
made more challenging by the same fundamental statistical difficulties that big data poses for other
learning tasks (e.g., prediction). Perhaps the most notable example is the high-dimensionality of
modern data [92], such as text data [73].
Efforts have been made to the intersection between big data and causality. Examples include

but are not limited to those discussed in [8, 39, 56, 104, 148]. The goal of this survey is to provide a
comprehensive and structured review of both traditional and frontier methods in learning causality,
as well as discussion about some open problems. We do not assume that a target audience may be
familiar with learning causality.

1.1 Overview and Organization
Broadly, machine learning tasks are either predictive or descriptive in nature. But beyond that we
may want to understand something causal, imagining that we were able to modify some variables
and rerun the data-generating process. These types of questions can also take two (related) forms:
1) How much would some specific variables (features or the label) change if we manipulate the
value of another specific variable? and 2) By modifying the value of which variables could we
change the value of another variable? These questions are referred to as causal inference and
causal discovery questions, respectively [48, 119]. For learning causal effects, we investigate to what
extent manipulating the value of a potential cause would influence a possible effect. Following
the literature, we call the variable to be manipulated as treatment and the variable for which we
observe the response as the outcome, respectively. One typical example is that how much do hot
temperatures raise ice cream sales. For learning causal relations, researchers attempt to determining
whether there exists a causal relationship between a variable and another. In our temperature and

1https://www.yelp.com/
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ice cream example, it is clear that ice cream sales do not cause high temperatures, but in other
examples it may not be clear. For example, we may be interested in investigating the question like
whether a genetic disposition towards cancer should be responsible for individuals taking up smoking?

In this survey, we aim to provide a comprehensive review on how to learn causality from massive
data. Below, we present an outline of the topics that are covered in this survey. First, in Section 2,
we introduce the preliminaries of learning causality from data for both causal inference or causal
discovery. We focus on the two formal frameworks, namely structural causal models [112] and the
potential outcome framework [108, 131]. Section 3 focuses on the methods that are developed for
the problem of learning causal effects (causal inference). Based on different types of data, these
methods fall into three categories: methods for data without and with unobserved confounders,
and advanced methods for big data. In Section 4, the widely used methods for learning causal
relations are discussed. After introducing traditional methods, we describe advanced methods
addressing special challenges in big data. Afterwards, in Section 5, we discuss recent research that
connects learning causality and machine learning. We examine how the research in three subareas,
supervised and semi-supervised learning, domain adaptation and reinforcement learning, can be
connected to learning causality.

1.2 Data for Learning Causality
We discuss data for learning causality2. A comprehensive introduction of such data can be found
in [24]. Although interventional data and a mixture of interventional and observational data are
used in the literature [61, 79, 143, 161], we focus on observational data in this survey to take
advantage of pervasive big data. In observational data, the value of a variable is determined by
its causes. In contrast, in interventional data, there exists at least one variable whose value is set
through intervention. For example, to study the causal effect of Yelp rating on customer flows of
restaurants, we can either use existing records (observational data) or collect interventional data
via manipulating the ratings of restaurants.

The ground truth used to train or evaluate causal learning methods often includes causal effects or
causal relations. Ground truth of average causal effects can be obtained via randomized experiments.
For example, the average effect of a new feature in a recommendation system is often estimated
through an A/B test [161]. However, it is often not possible to collect ground truth of individual
causal effects via randomized experiments as it requires knowledge of the counterfactual [113]. In
practice, such ground truth is often acquired through simulations based on domain knowledge [77,
97]. Ground truth of causal relations is often obtained through prior knowledge (e.g., certain
mutations of genes can cause diseases).
Data for Learning Causal Effects. Here, we review the types of data, the problems that can be
studied if the data is given, and the methods that can provide practical solutions. We list three
types of data for learning causal effects. First, a standard dataset for learning causal effects (X , t ,y)
includes feature matrixX , a vector of treatments t and outcomesy. We are particularly interested in
the causal effect of one variable t (treatment) on another variable y (outcome). For the second type,
there is auxiliary information about inter-dependence or interference between units such as links
or temporal inter-dependencies between different data units, represented by a matrix A. Examples
of this type of data include attributed networks [93, 165], time series [40], and marked temporal
point process [54]. Moreover, the third type of data often comes with unobserved confounders, we
need the help of special causal variables, including the instrumental variable (IV), the mediator, or
the running variable. These variables are defined by causal knowledge, thus specific methods can
be applied for learning causal effect for such types of data.

2The data and algorithm indexes for learning causality are covered in the Appendix

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2020.



1:4 R. Guo et al.

Problems Data Example Datasets Methods

Learning
causal effects

Datasets contain features,
treatment and outcome (X , t , y).

IHDP, Twins ,
Jobs

Regression adjustment,
Propensity score,
Covariate balancing,
Machine learning based

Datasets with features, treatment,
outcome and special variable(s):
(X , t , y, z )

1980 Census Extract,
CPS Extract

IV methods,
Front-door criterion,
RDD,
Machine learning based

Learning
causal
relations.

Multivariate data with causal relations,
denoted by X with a causal graph G ,
including bivariate data with causal
direction.

Abscisic Acid
Signaling Network ,
Weblogs
SIDO

Constraint-based,
Score-based methods,
Algorithms for FCMs.Multivariate time series

{[x,1(l ), ..., x, J (l )]}Ll=1 with a causal
graph G

PROMO

Table 1. Overview of this work in terms of the problems, data and methods.

Data for Learning Causal Relations.We describe two types of data for learning causal relations
(causal discovery). The first type is the multivariate data X along with a ground truth causal graph
G for evaluation, with which we learn the causal graph. A special case is the bivariate data and the
task reduces to distinguishing the cause from the effect [104]. The causal graph is often defined by
prior knowledge and could be incomplete. The second type of data for learning causal relations is
the multivariate time series data which also comes with a ground truth causal graph. The task is to
learn causal relations among the variables [50]. Although the ground-truth causal graph is often
unique [50, 119], many methods output a set of candidate causal graphs.

1.3 Previous Work and Contributions
There are a number of other comprehensive surveys in the area of causal learning. Pearl [112] aims
to convey the fundamental theory of causality based on the structural causal models. Gelman [48]
provides high-level opinions about the existing formal frameworks and problems for causal learning.
Mooji et al. [104] focus on learning causal relations for bivariate data. Spirtes and Zhang [146]
summarize methods for learning causal relations on both i.i.d. and time series data with a focus on
several semi-parametric score based methods. Athey and Imbens [10] describe decision trees and
ensemble machine learning models for learning causal effects.

Different from previous work, this survey is structured around various data types, and what sorts
of causal questions can be addressed with them. Specifically, we describe what types of data can
be used for the study of causality, what are the problems that can be solved for each type of data
and how they can be solved. In doing so, we aim to provide a bridge between the areas of machine
learning, data mining, and causal learning in terms of terminologies, data, problems and methods.

1.4 Running Example
We consider a study of how Yelp ratings influence potential restaurant customers [3]. Yelp is a
website where customers can share their reviews of a certain goods and services. Each review
includes an integer rating from 1 to 5 stars. For our purposes, the Yelp rating is our treatment
variable and the number of customers (in some well-defined period) is the outcome variable. For
simplicity, we assume that these variables are binary. A restaurant receives the treatment t = 1 if
its rating is above some threshold; otherwise, it is under control treatment t = 0. For the outcome,
y = 1 means a restaurant is completely booked and y = 0 means it is not.

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2020.
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Table 2. Nomenclature

Nomenclature
Terminology Alternatives Explanation
causality causal relation, causation causal relation between variables
causal effect the strength of a causal relation
instance unit, sample, example an independent unit of the population

features covariates, observables variables describing instancespre-treatment variables

learning causal effects forward causal inference identification and estimation of causal effectsforward causal reasoning

learning causal relations
causal discovery

inferring causal graphs from datacausal learning
causal search

causal graph causal diagram a graph with variables as nodes and causality as edges
confounder confounding variable a variable causally influences both treatment and outcome

x z y

(a) Chain

x z y

(b) Fork

x z y

(c) Collider

Fig. 1. Three typical DAGs for conditional independence
2 PRELIMINARIES
Here, we present the preliminaries for two fundamental frameworks: structural causal models
and the potential outcome framework. To formulate causal knowledge, we need causal models.
A causal model is a mathematical abstraction that quantitatively describes the causal relations
between variables. First, causal assumptions or prior causal knowledge can be represented by an
incomplete causal model. Then, what is missing can be learned from data. The two most well-
known causal models are the structural causal models (SCMs) [113] and the potential outcome
framework [108, 131]. They are considered as the foundations because they enable a consistent
representation of prior causal knowledge, assumptions, and estimates.

We present the terminologies and notations that are used throughout this survey. Table 2 displays
key nomenclature. In this survey, a lowercase letter, say x , denotes a specific value of a corresponding
random variable (or RV),X . Bold lowercase letters denote vectors or sets (e.g., x ) and bold uppercase
letters signify matrices (e.g., X ). Calligraphic uppercase letters such can signify special sets such
as sets of nodesV and edges E in a graph G. X and xi present features for all instances and that
for the i-th instance, respectively. Without specification, the subscripts denote the instance and
the dimension. For example, xi denotes features of the i-th instance and x∗, j signifies the j-th
feature. The letter t will be used to denote the treatment variable; in this work, it is often assumed
to be binary and univariate. The letter y denotes the outcome variable. We use the subscript and
superscript of y to signify the instance and the treatment it corresponds to. When the treatment is
binary, y1

i denotes the outcome when the instance i is treated (ti = 1). The letter τ denotes various
treatment effects, defined as a change in the outcome variable for different levels of treatment.

2.1 Structural Causal Models
Structural causal models (SCMs) provide a comprehensive theory of causality [112]. An SCM often
consists of two components: the causal graph (causal diagram) and the structural equations.
Causal Graphs. A causal graph forms a special class of Bayesian network with edges representing
the causal effect, thus it inherits the well defined conditional independence criteria.

Definition 1. Causal Graph. A causal graph G = (V, E) is a directed graph that describes the
causal effects between variables, whereV is the node set and E the edge set. In a causal graph, each
node represents a random variable including the treatment, the outcome, other observed and unobserved
variables. A directed edge x → y denotes a causal effect of x on y.

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2020.
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x

z u

y

S

(a) Conditioning on S blocks the node z as
z ∈ S and z is not a collider.

x

z

z
′

u y

S

(b) Conditioning on S blocks z as z is a col-
lider and neither z nor z

′
is in S.

Fig. 2. Examples of z being blocked by conditioning on S

t

x

y

(a) An SCM without intervention.

do(t ′)
x

y

(b) An SCM under the intervention do(t).

Fig. 3. SCMs without and under intervention do(t ′) for the Yelp example, where x , t and y denote restaurant
category, Yelp rating and customer flow.

A path is a sequence of directed edges and a directed path is a path whose edges point to the same
direction. In this work, as is common in the field, we only consider directed acyclic graphs (DAGs)
where no directed path starts and terminates at the same node. Given a SCM, the conditional
independence embedded in its causal graph provides sufficient information confirm whether it
satisfies the criteria such that we can apply certain causal inference methods. To understand
the conditional independence, here, we briefly review the concept of dependency-separation (d-
separation) based on the definition of blocked path. Fig. 1 shows three typical DAGs. In the chain
(Fig. 1a), x causally affects y through its influence on z. In the fork (Fig. 1b), z is the common cause
of both x and y. In this case, x is associated with y but there is no causation between them. When
z is a collider node (see Fig. 1c), both x and y cause z but there is no causal effect or association
between x and y. In the chain and fork, the path between x and y is blocked if we condition on z,
which can be denoted as x ⊥⊥ y |z. Contrarily, in a collider (Fig. 1c), conditioning on z introduces an
association between x and y, i.e., x ⊥⊥ y and x ̸⊥⊥ y |z. Generally, we say conditioning on a set of
nodesZ blocks a path p iff there exists at least one node z ∈ Z in the path p.

Definition 2. Blocked. We say a node z is blocked by conditioning on a set of nodes S if one of the
two conditions is satisfied: (1) z ∈ S and z is not a collider node (Fig. 2a); (2) z is a collider node, z < S
and no descendant of z is in S (Fig. 2b).

With this definition, we say a set of variables S d-separates two variables x and y iff S blocks all
paths between them. d-separation plays a crucial role in explaining causal concepts. The Causal
Markovian condition is often assumed in SCMs, which means we can factorize the joint distribution
represented by a Markovian SCM of variablesV =

{
x∗,1, ...,x∗, J

}
with:

P(x∗,1, ...,x∗, J ) =
∏
j

P(x∗, j |Pa∗, j , ϵ∗, j ), (1)

where Pa∗, j denotes the set of parent variables of x∗, j , each of which has an arrow in x∗, j . Moreover,
ϵ∗, j is the noise which represents the causal effect of unobserved variables on x∗, j . Here, we introduce
the key concepts of learning causality through a toy SCM which embeds causal knowledge for
the Yelp example [3]. In Fig. 3a, there are three random variables, i.e., the restaurant category x
(confounder), Yelp star rating t (treatment) and customer flow y (outcome). The three directed edges
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represent the three causal effects: (1) Restaurant category influences its Yelp rating. For example,
the average rating of fast food restaurants is lower than that of high-end restaurants. (2) Restaurant
category also influences its customer flow. For example, the average customer flow of fast food
restaurant is higher than that of high-end restaurants. (3) Yelp rating of a restaurant influences its
customer flow.
Structural Equations.Given a causal graph along with a set of structural equations, we can specify
the causal effects signified by the directed edges. A set of non-parametric structural equations can
quantify the three causal effects shown in the causal graph in Fig. 3a as:

x = fx (ϵx ), t = ft (x , ϵt ), y = fy (x , t , ϵy ). (2)

In Eq. 2, ϵx , ϵt and ϵy denote the “noise” of the observed variables, concieved as exogenous or
mutually independent sources of unmeasured variation. The noise terms represent the causal effect
of unobserved variables on the variable on the LHS. Note that for each equation, we assume that
the variables on the RHS influences those on the LHS, not the other way around. Rewriting this
equation in a different order as x = f −1

t (t , ϵt ) can be misleading as it implies that Yelp rating causally
influences restaurant type. The structural equations (Eq. 2) provide a quantitative way to represent
intervention on a variable of the corresponding causal graph (Fig. 3a). The do-calculus [113] of
Pearl was proposed to define intervention in SCMs. Specifically, the do-calculus introduces a new
operator do(t ′), which denotes the intervention of setting the value of the variable t to t ′. The
notation of do(t) leads to a formal expression of the interventional distributions:

Definition 3. Interventional Distribution (Post-intervention Distribution). The interven-
tional distribution P(y |do(x ′)) denotes the distribution of the variable y when we rerun the modified
data-generation process where the value of variable x is set to x ′.

For example, for the causal graph in Fig. 3a, the post-intervention distribution P(y |do(t)) refers
to the distribution of customer flow y as if the rating t is set to t ′ by intervention, where all the
arrows into t are removed, as shown in Fig. 3b. The structural equations associated with Fig. 3b
under the intervention on the treatment variable, denoted by do(t ′), can be written as:

x = fx (ϵx ), t = t ′, y = fy (x , t , ϵy ), (3)

which formulates the interventional distribution as P(y |do(t ′)) = fy (x , t , ϵy ). Then, when it comes
to the causal effect of t on y, in the language of SCMs, the problem of calculating causal effects can
be translated into queries about the interventional distribution P(y |do(t))with different t . Implicitly,
we assume that the variables follow the same causal relations of a SCM for each instance. Hence,
SCMs enable us to define average treatment effect (ATE). For the running example, the ATE of Yelp
rating might be defined as:

τ (t , c) = E[y |do(t)] − E[y |do(c)], t > c, (4)

where t and c refer to the ratings that are considered as positive and negative, respectively. In many
cases, the treatment variable is binary, thus the ATE reduces to a value E[y |do(1)] − E[y |do(0)].
It is crucial to note that P(y |do(t)) and P(y |t) are not the same, which makes calculating ATEs
impossible. This gap can give rise to confounding bias, which results if one estimates treatment
effects using P(y |t) where P(y |do(t)) is in fact required. The existence of a back-door path is a
common source of confounding, rendering P(y |do(t)) and P(y |t)) distinct. An example of is the
path t ← x → y in Fig. 3a. Observe also that randomized treatment assignment directly avoids
back-door paths, side-stepping confounding bias. We present the formal definitions of confounding
bias, back-door path and confounder with do-calculus and SCMs.

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2020.
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Definition 4. Confounding Bias. Given variables x , y, confounding bias exists for causal effect
x → y iff the probabilistic distribution representing the statistical association is not always equivalent
to the interventional distribution, i.e., P(y |x) , P(y |do(x)).
Definition 5. Back-door Path. Given a pair of treatment and outcome variables (t ,y), we say a
path connecting t and y is a back-door path for (t ,y) iff it satisfies that (1) it is not a directed path;
and (2) it is not blocked (it has no collider).

Definition 6. Confounder (Confounding Variable). Given a pair of treatment and outcome
variables (t ,y), we say a variable z < {t ,y} is a confounder iff it is the central node of a fork and it is
on a back-door path of (t ,y).
In particular, in the running example, the probability distribution P(y |t) results from a mixture

of the causal effect P(y |do(t)) and the statistical associations produced by the back-door path t ←
x → y, where x is the confounder. To obtain unbiased estimate of causal effects from observational
data requires eliminating confounding bias, a procedure referred to as causal identification.

Definition 7. Causal Identification. We say a causal effect is identified iff the hypothetical distri-
bution (e.g., interventional distribution) that defines the causal effect is formulated as a function of
probability distributions over observables.

A common way to identify causal effects in SCMs is to block the back-door paths that reflect other
irrelevant causal effects. A way to eliminate confounding bias is to estimate the causal effect within
subpopulations where the instances are homogeneous w.r.t. confounding variables [112]. This corre-
sponds to adjustment on variables that satisfy the back-door criterion for causal identification [113].
Now we present a formal definition of the back-door criterion.

Definition 8. Back-door Criterion. Given a treatment-outcome pair (t ,y), a set of features x
satisfies the back-door criterion of (t ,y) iff conditioning on x can block all back-door paths of (t ,y).
A set of variables that satisfies the back-door criterion is referred to as an admissible set or a

sufficient set. For the running example, we are interested in the causal effect of Yelp star rating on
the customer flow (t → y) or equivalently the interventional distribution P(y |do(t)). So for causal
identification, we aim to figure out a set of features that satisfies the back-door criterion for the
treatment-outcome pair (t ,y). For example, if restaurant category x, j is the only confounder for
the causal effect of Yelp rating on customer flow, then S =

{
x, j

}
satisfies the back-door criterion.

There are two types of data w.r.t. the back-door criterion for causal inference. The first data type
assumes that the whole set or a subsets of the features S satisfies the back-door criterion such that
by making adjustment on S, P(y |do(t)) can be identified. We will introduce methods for learning
causal effects with data of this type in Section 3.1. In the second data type, other criteria are used
to identify causal effects without the back-door criterion satisfied.
Confounding bias without back-door path. Confounding bias may exist without back-door
paths. An example is a type of selection bias [18], when the causal graph is t → z ← x → y
and the dataset is collected only for instances with zi = 1, then within this dataset, the estimated
statistical association P(y |t) can be non-zero although we know that there is no causal effect t → y.
Selection bias can also result from adjustment on certain variables (e.g., colliders or descendants of
the outcome variable). Without knowing the complete graph, Entner et al. [41] provide a set of
rules that are sufficient to decide whether a set of variables satisfy the back door criterion, or that t
actually has no effect on y. This implies that there is a middle ground between hoping to adjust for
all and only the right stuff, and trying to learn the entire causal graph.
Beyond do-calculus. Do-calculus has some limitations, which mainly come from the i.i.d. assump-
tion [126]. This implies that it is difficult to formulate individual-level hypothetical distributions
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with do-calculus. Let us consider the running example, even if we could hack Yelp and let it show
median rating instead of average rating, we still cannot answer questions such as what would the
customer flow for a restaurant be if we had increased its rating by 0.5 star without changing the
ratings of others? In [114], Pearl refers to the hypothetical distributions which cannot be identified
through interventions as counterfactuals. Do-calculus, which formally represents hypothetical in-
terventions, cannot formulate counterfactuals in SCMs. Therefore, besides do-calculus, Pearl [112]
introduced a new set of notations. For example, P(yt |y ′, t ′) denotes the probability of the outcome
y would be if the observed treatment value is t , given the fact that we observe y ′, t ′ in the data.
In the running example, for a restaurant with rating t ′ and customer flow y ′, the counterfactual
probability P(yt |y ′, t ′) is the distribution of the customer flow if we had observed its rating as t .

2.2 Potential Outcome Framework
The potential outcome framework [108, 131] is widely used by practitioners to learn causal effects
as it is defined w.r.t. a given treatment-outcome pair (t ,y). A potential outcome is defined as:

Definition 9. Potential Outcome. Given the treatment and outcome t ,y, the potential outcome of
instance i , yti , is the outcome that would have been observed if the instance i had received treatment t .

This framework allows a straightforward articulation of the basic challenge of causal inference [67]:
only one potential outcome can be observed for each instance. Using potential outcomes it is
possible to define the individual treatment effect (ITE) as the difference between potential outcomes
of a certain instance under two different treatments. ITE can be extended to ATE on arbitrary
populations. Practitioners often assume binary treatment (t ∈ {0, 1}), where t = 1 (t = 0) mean
that an instance is under treatment (control). The formal definition of ITE is:

Definition 10. Individual Treatment Effect. Assuming binary treatment, given an instance i and
its potential outcomes yti , the individual treatment effect is defined as τi = y1

i − y0
i .

Based on ITE, the ATE of the target population and other subpopulation average treatment
effects such as conditional average treatment effect (CATE) can be defined. Earlier in this section,
we have already defined ATE with do-calculus, here we show that ATE can also be formulated in
the potential outcome framework. Given ITEs, ATE can be formulated as the expectation of ITEs
over the whole population i = 1, ...,n as:

τ = Ei [τi ] = Ei [y1
i − y0

i ] =
1
n

n∑
i=1
(y1

i − y0
i ), (5)

The ATE on subpopulations is often of interest. An example is the conditional average treatment
effect (CATE) of instances with the same features, i.e., τ (x) = Ei :xi=x [τi ].
Using the potential outcome framework to estimate treatment effects. Similar to how
P(y |do(t)) and P(y |t) are distinct in the SCM framework, P(yt ) and P(y |t = 1) are not the same
within the potential outcomes framework. First, the most fundamental assumption that is com-
monly used to facilitate estimation is the stable unit treatment value assumption (SUTVA), which
can be broken down into two conditions: well-defined treatment levels and no interference. The
condition of well-defined treatment indicates that given two different instances i , j, if the values
of their treatment variable are equivalent, then they receive the same treatment. The condition
of no interference signifies that the potential outcomes of an instance is independent of what
treatments the other units receive, which can be formally expressed as yti = y

ti
i , where t ∈ {0, 1}

n

denotes the vector of treatments for all instances. Although the condition of no interference is
often assumed, there are cases when the inter-dependence between instances matters [122, 151].
The second assumption, consistency, means that the observed outcome is independent of the how
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the treatment is assigned. Finally, a commonly invoked condition is the unconfoundedness (a.k.a.
ignorability), which posits that the set of confounding variables S can be measured. Starting from
this point, we use s to denote the vector of confounding variables. Unconfoundedness means that
the values of the potential outcomes are independent of the observed treatment, given the set of
confounding variables. Unconfoundedness is defined as: y1

i ,y
0
i ⊥⊥ ti |s , where s denotes a vector

of confounders, each element of which is a feature that causally influences both the treatment
ti and the outcome yti . We can see that this is also an assumption defined at the individual level.
Unconfoundedness directly leads to causal identification as Pearl [112] showed that, given Eq. 2.2,
S always satisfies the back-door criterion of (t ,y). That is, under unconfoundedness we have
P(y1 |t , s) = P(y |t , s). A further condition P(t = 1|x) ∈ (0, 1) if P(x) > 0 is often invoked, which,
when combined with ignorability, is referred to as strong ignorability.
Comparing SCMs and potential outcomes. The two formal frameworks are logically equivalent,
which means an assumption in one can always be translated to its counterpart in the other [112].
There are also some differences between them. In the potential outcome framework, the causal
effects of the variables other than the treatment and the special variables such as instrumental
variable (see Section 3.2.1) are not defined. This is a strength of this framework as we can model the
interesting causal effects without knowing the complete causal graph [2]. While in SCMs, we are
able to study the causal effect of any variable. Therefore, SCMs are often preferred when learning
causal relations among a set of variables [2]. Conversely, if the goal is narrowly to estimate a given
treatment effect, developing estimators can be more straightforward using the potential outcomes
framework. The reader may draw their own conclusions after consulting Section 3.

3 LEARNING CAUSAL EFFECTS
In this section, we introduce methods for learning causal effects. We aim to understand how to
quantify causal effects in a data-driven way.We first introduce the problem statement and evaluation
metrics. Next, we review three categories of methods: those with and without unconfoundedness
and advanced methods for big data. We define the problem of learning causal effects.

Definition 11. Learning Causal Effects Given n instances, [(x1, t1,y1), ..., (xn , tn ,yn)], learning
causal effects quantifies how the outcome y is expected to change if we modify the treatment from c to
t , which can be defined as E[y |t] − E[y |c], where t and c denote a treatment and the control.

Depending on the application, we care about the causal effect for different populations. It
can be the whole population, a known subpopulation that is defined by some conditions, an
unknown subpopulation or an individual. Among all types of treatment effects, the ATE is often
interesting when it comes to making decision on whether a treatment should be introduced to a
population. Furthermore, in SCMs and do-calculus, the identification of ATE only requires to query
interventional distributions but not counterfactuals. This means that ATE is often easier to identify
and estimate than other types of treatment effects. In terms of evaluation, regression error metrics
such as mean absolute error (MAE) can be used to evaluate models for learning ATE. Given the
ground truth τ and the inferred ATE τ̂ , the MAE on ATE is:

ϵMAE_ATE = |τ − τ̂ |. (6)

However, when the population consists of heterogeneous groups, ATE can be misleading. For
example, Yelp rating may matter much more for restaurants in big cities than those in small towns.
Therefore, ATE can be spurious as an average of heterogeneous causal effects. In contrast, the
average should be taken within each homogeneous group. In many cases, without knowledge
about the affiliation of groups, an assumption we can make is that each subpopulation is defined by
different feature values. Thus, we can learn a function tomap the features that define a subpopulation
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to its estimated ATE. With this assumption, given a certain value of features x and binary treatment
t , the CATE is a function of x and is defined as:

τ (x) = E[y |x , t = 1] − E[y |x , t = 0]. (7)

In this case, we assume that only the features and the treatment are two factors that determine the
outcome. The target is to learn a function τ̂ to estimate CATE. Empirically, with cross-validation,
we can evaluate the quality of the learned function τ̂ (x) based on the mean squared error (MSE):

ϵPEHE =
1
n

n∑
i=1
(y1

i − y0
i − τ̂ (xi ))2, (8)

which is often referred to as precision in estimation of heterogeneous effect (PEHE). It is also adopted
for evaluating estimated individual treatment effects (ITE) [65, 77, 97, 138]. Note that PEHE is the
mean squared error of the estimated ITEs.

3.1 Traditional Methods without Unobserved Confounders
To simplify the problem, it is commonly assumed (or hoped) that all confounders are among
the observed features. In SCMs, this is equivalent to assuming that conditioning on some subset
of observed features, denoted by s , can block all the back-door paths. Adjustment eliminates
confounding bias based on the subset of features x . We introduce three families of adjustments:
regression adjustment, propensity score methods and covariate balancing. We assume binary
treatment t ∈ {0, 1} and adopt the language of generalized structural equation introduced in
Section 2. The causal graph embedding the assumption for such methods is shown in Fig. 4.

t

x
y

Fig. 4. A causal graph for the unconfoundedness assumption which is used for learning causal effects.

3.1.1 Regression Adjustment. In supervised learning, we fit a function to estimate the probability
distribution P(y |x) where y and x denote the label and the features. As discussed in Section 2, to
learn causal effects, we are interested in interventional distributions and counterfactuals which
cannot be directly estimated from data. Following the potential outcome framework, we infer the
counterfactual outcomes y1−ti

i based on the features x and the treatment t . Roughly speaking, there
are two types of regression adjustment. One is to fit a single function to estimate P(y |x , t). It is
enough for inferring ITE because there would be no confounding bias by conditioning on x , i.e.,
P(y |t ,x) = P(y |do(t),x). So we can infer the counterfactual outcome as ŷ1−ti

i = E(yi |1 − ti ,xi ).
The second is to fit a model for each potential outcome, i.e. P1(y |x) = P(y |t = 1,x) and P0(y |x) =
P(y |t = 0,x). Then we can estimate ATE by:

τ̂ =

[
n∑
i=1
(ŷ1

i − ŷ0
i )
]
/n, (9)

where we estimate ŷti by the model E(y |t ,xi ).

3.1.2 Propensity Score Methods. Propensity score methods can be considered as a special case
of matching methods [106]. Matching methods divide instances into strata and treat each stratum
as a randomized controlled trial (RCT). Based on this assumption, ATE is identified and can be
estimated by the naïve estimator within each stratum. In matching methods, we assume perfect
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stratification, which means that (1) each group is defined by a set of features x ; (2) instances in
a group are indistinguishable except the treatment and the potential outcomes [106]. Formally,
perfect stratification means E[yti |ti = 1, f (x)] = E[yti |ti = 0, f (x)], t ∈ {0, 1}. Function f (x)
outputs a continuous value and we stratify instances into groups based on f (x). This equation can
be interpreted as: given the group affiliation, the expected values of the potential outcomes do not
change with the observed treatment. This is equivalent to the unconfoundedness assumption in
each stratum defined by f (x) whose parameterization can be flexible.

But when there exists a group which only contains instances with t = 1 or t = 0, where we cannot
estimate ATE in such a stratum with the naïve estimator. This issue is referred to as a lack of overlap.
Note that the strong ignorability condition includes P(t = 1|x) ∈ (0, 1), thus ensuring overlap in
the large sample limit. To mitigate the lack of overlap,matching as weighting methods are proposed,
side-stepping the need for perfect matchings, which are difficult to achieve in practice. The most
widely adopted methods define the function f (x) as an estimator of the propensity score P(t |x).
Although the features and treatment assignments are fixed given observational data, we assume
that observed treatment is assigned by sampling from the true propensity score: ti ∼ P(ti |xi ). That
is, the propensity score is the probability of receiving treatment, given the features. The main
advantage of the propensity score, in contrast to perfect matching, is that it is a sufficient dimension
reduction [130] in the sense that strata defined purely in terms of the propensity score will permit
unconfounded causal inference. Moreover, as a single continuous quantity, it is possible to develop
estimators based on weighted averages rather than discrete stratification.
Of course, in practice the propensity score is not known beforehand, but must be estimated.

Fortunately, supervised learning provides many methods for estimating the propensity score by
training a classifier to predict whether an instance would be treated, given its features. It is common
to estimate P(t |s) by logistic regression. Despite its popularity, note that the validity of a linear
logistic model can be suspected and nonparametric alternatives are readily available.
Propensity score methods can be categorized into four classes [12]: propensity score match-

ing (PSM), propensity score stratification, inverse probability of treatment weighting (IPTW), and
adjustment based on propensity score. Here we focus on the PSM and IPTW as propensity score
stratification is an extension of PSM, and adjustment based on propensity score is a combination of
regression adjustment and propensity score methods.
Propensity Score Matching (PSM). PSM matches a treated (controlled) instance to a set of
controlled (treated) instances with similar propensity scores. For example, in Greedy One-to-one
Matching [53], for each instance i , we find an instance j with the most similar propensity score to i
in the other treatment group. Once the instances are matched, we can estimate ATE as:

τ̂ =

[ ∑
i :ti=1
(yi − yj ) +

∑
i :ti=0
(yj − yi )

]
/n. (10)

Besides the Greedy One-to-one PSM, there are many other PSMmethods. The difference comes what
methods we use to match instances. Readers can check [12] for various PSM methods. Stratification
on propensity scores is an extension of PSM. Having propensity score estimated, we can stratify
instances based on the predefined thresholds on propensity scores or the number of strata.

Thus, stratum-specific ATE can be calculated by the naïve estimator. Specifically, ATE is calculated
as the weighted average over all strata:

τ̂ =
∑
j

|Uj |(
1
|U 1

j |
∑
i ∈U 1

j

yi −
1
|U 0

j |
∑
i ∈U 0

j

yi )/
∑
j

|Uj |, (11)
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whereUj ,U 1
j andU 0

j denote the set of instances, treated instances and controlled instances in the i-
th stratum, respectively. A combination of regression adjustment and propensity score stratification
can be used to account for the difference between instances in the same stratum [12, 74, 98].
Inverse Probability of Treatment Weighting (IPTW). IPTW [66] is a covariate balancing
method. Intuitively, we can weight instances based on their propensity scores to synthesize a
RCT [12]. A common way to define the sample weightwi is by:

wi =
ti

P(ti |xi )
+

1 − ti
1 − P(ti |xi )

. (12)

With Eq. 12, we can find that for a treated instance i and a controlled instance j,wi =
1

P (ti |xi ) and
w j =

1
1−P (tj |x j ) . So the weight refers to the inverse probability of receiving the observed treatment

(control). For example, if we observe 10 instances with xi = x and only one of them is treated. Then
we estimate the propensity score P(t = 1|x) as 0.1. To synthesize a RCT, we need to balance the
two treatment groups by weighting the treated instance 9 times as the instances under control,
which is done by Eq. 12. Then we can calculate a weighted average of factual outcomes for the
treatment and control groups:

τ̂ =
1
n1

∑
i :ti=1

wiyi −
1
n0

∑
i :ti=0

wiyi , (13)

where n1,n0 denote the number of instances under treatment and control. This is based on the
idea that weighting the instances with inverse probability makes a synthetic RCT. Hence, a naïve
estimator can be applied to estimate the ATE as in Eq. 13. Regression adjustment can also be applied
to the weighted dataset to reduce the residual of the synthetic RCT [76]. Instances with propensity
score close to 1 or 0 may suffer from an extremely large weight. In [64], Hernan proposes to stabilize
weights to handle this issue in IPTW.
Doubly Robust Estimation (DRE). Funk et al. [46] propose DRE as a combination of a regression
adjustment E[y |t ,x] and another method that estimates the propensity score E[t |x]. In fact, only
one of the two underlying models needs to be correctly specified to make it an unbiased and con-
sistent estimator of ATE. In particular, a DRE model estimates individual-level potential outcomes
based on these two models as:

ŷ1
i =

yiti

P̂(ti |xi )
−
ỹ1
i (ti − P̂(ti |xi ))

P̂(ti |xi )
, ŷ0

i =
yi (1 − ti )

1 − P̂(ti |xi )
−
ỹ0
i (ti − P̂(ti |xi ))
1 − P̂(ti |xi )

(14)

where ỹtii denotes the estimated potential outcomes of the instance i with regression adjustment
E[y |t ,x] and P̂(ti |xi ) is the estimated propensity score for the instance i . Taking a closer look at
Eq. 14, we can find that the regression adjustment model is applied to the estimation of counterfac-
tual outcomes as: ŷ1−ti

i = ỹ1−ti
i , while more complicated, a mixture of the regression adjustment

of propensity score models is developed for the factual outcomes. Then we can estimate ATE by
taking the average over the estimated ITE for all the instances as in Eq. 9.
Targeted Maximum Likelihood Estimator (TMLE) [154] is a more generalized method than
DRE. ATE can be inferred with TMLE as: 1

n
∑n

i=1 Q
∗
n(1,xi ) −Q∗n(0,xi ). To obtain Q∗n(t ,x), there are

three steps: (1) A model Q0
n(t ,x) is fitted to estimate the factual outcomes with the features and

the treatment. (2) A model д(t = 1,x) is fitted for propensity scores P(t = 1|x). (3) Given Q0
n and

д(t ,x), another model is fitted to minimize the mean squared error (MSE) on the factual outcomes.
Assuming y ∈ [0, 1], this is done by learning a new estimator Q̄∗n(t ,x) with parameters ϵ̂0 and ϵ̂1:

Q̄∗n(t ,x) = expit
[
Q0
n(t ,x)/(1 −Q0

n(t ,x)) + ϵ̂0H0(t ,x) + ϵ̂1H1(t ,x)
]
, (15)
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where expit(a) = 1
1+exp(−a) , H0(t ,x) = − 1(t=0)

д(t=0 |x ) and, H1(t ,x) = 1(t=1)
д(1 |W ) .

3.1.3 Covariate Balancing. Besides reweighting samples with propensity scores, the covariate
balancing methods learn sample weights through regression [84].
Entropy Balancing (EB). Hainmueller [60] proposes EB, a preprocessing method for covariate
balancing. The goal is to learn sample weights of the instances under control such that the moments
of the two groups are matched. The weights are learned by minimizing the objective:

arg min
wi

H (w) =
∑
i :ti=0

d(wi ) s .t .
∑
i :ti=0

wicr i (xi ) =mr with r = 1, ...,R, (16)

where
∑

i :ti=0wi = 1; wi ≥ 0,∀i ∈ {i |ti = 0}. d(·) is a distance metric (e.g., KL divergence
d(wi ) = wi log(wi/qi )) measuring the distance between the learned weightsw and base weights
q,qi ≥ 0, and

∑
i qi = 1. We can use uniform weights qi = 1/n0, where n0 denotes the number of

instances under control.
∑

i :ti=0wicr i (xi ) =mr refers to a set of R balance constraints where cr i (xi )
is specified as a moment function for the control group andmr denotes the counterpart of the
treatment group. For example, when cr i (xi ) = (x ji )r , then

∑
i :ti=0wicr i (xi ) denotes the reweighted

r -th moment of the feature x j for the control, and therefore, mr would contain the r -th order
moment of a feature x j from the treatment group. Compared to other balancing methods, EB allows
a large set of constraints such as moments of feature distributions and interactions. Different from
the matching methods, EB keeps weights close to the base weights to prevent information loss.
Approximate Residual Balancing (ARB). ARB [11] combines balancing weights with a regular-
ized regression adjustment for learning ATE from high-dimensional data. ARB consists of three
steps. First, the sample weightsw are learned as:

arg min
w

(1 − ξ )| |w | |22 + ξ | |
1
n1

∑
i :ti=1

xi −XT
i :ti=0w | |2∞ s .t .

∑
i :ti=0

wi = 1 and wi ∈ [0, (n0)−2/3], (17)

where Xi :ti=0 denotes the feature matrix for the control group. Then a regularized linear regression
adjustment model with parameters β fitted as:

arg min
β

∑
i :ti=0
(yi − xT β)2 + λ((1 − α)| |β | |22 + α | |β | |1), (18)

where λ and α are hyperparameters controlling the strength of regularization. At the end, we can
estimate ATE as τ̂ = 1

n1
∑

i :ti=1 yi − ( 1
n1

∑
i :ti=1 x

T
i β +

∑
i :ti=0wi (yi − xTi β)). Compared to EB [60],

ARB handles sparseness of high-dimensional data with lasso and elastic net [149].
Covariate Balancing Propensity Score (CBPS). CBPS [72], a method robust to misspecification
of propensity score model, is proposed to model propensity scores and balance covariate simulta-
neously. Assuming the propensity score model f (x) with parameters β , the efficient Generalized
Method of Moments (GMM) estimator is used to learn β :

arg min
β

[
1
n

∑
i

д(ti ,xi )
]T

Σ(t ,X )−1

[
1
n

∑
i

д(ti ,xi )
]
, (19)

д(ti ,xi ) =
(
ti f ′(xi )
f (xi ) −

(1−ti )f ′(xi )
1−f (xi ) ,

(ti−f (xi ))f ′(xi )
f (xi )(1−f (xi ))

)T
are the moment conditions. They are derived from

the first order condition of minimizing −∑n
i=1 ti log f (xi )+ (1−ti ) log(1− f (xi )), the MLE estimator

by which we learn β . Similar to EB [60], CBPS combines two methods: covariate balancing and
IPTW. Compared to EB, CBPS models propensity scores.
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Fig. 5. A causal graph of a valid instrumental variable (i) when there are unobserved confounders (z). The
binary exogenous variable i stands for whether a customer submits a review. The restaurant type (x) is an
observed confounder and z is a set of unobserved confounders.

3.2 Traditional Methods with Unobserved Confounders
In many real-world problems of learning causal effects, there exist unobserved confounders. In these
cases, the assumption of unconfoundedness is not satisfied. In the language of SCMs, this means we
are not able to block back-door path by conditioning on the features. Therefore, a family of methods
are developed to handle this situation. The intuition is to utilize alternative information. Here, we
focus on three most popular methods for learning causal effects with unobserved confounders:
instrumental variable methods, front-door criterion (or “identification by enumeration ofmechanism”),
and regression discontinuity design.

3.2.1 Instrumental Variable Methods. Instrumental variables enable us to learn causal effects
with unobserved confounders, which are defined as:

Definition 12. Instrumental Variable Given an observed variable i , features x , the treatment t
and the outcome y, we say i is a valid instrumental variable (IV) for the causal effect of t → y iff i
satisfies: (1) i ̸⊥⊥ t |x , and (2) i ⊥⊥ y |x ,do(t) [6].

This means a valid IV causally influences the outcome only through affecting the treatment.
In SCMs, the first condition means there is an edge i → t or a non-empty set of collider(s) x s.t.
i → t ← x where x denotes the features or a subset of features. The second condition requires that
i → t → y is the only path that starts from i and ends at y. Thus, blocking t makes i ⊥⊥ y. This
implies the exclusive restriction that there must not exist direct edge i → y or path i → x ′ → y
where x ′ ⊆ x . Mathematically, for all t and i , j , this can also be denoted byy(do(i), t) = y(do(j), t).

In the running example, if we only observe one confounder - the restaurant type (x ), while the
other confounder (z) remain unobserved. By assuming that whether a customer submits a review (i)
is an exogenous random variable, then it is a valid IV (Fig. 5). This is because i causally influences t
and it can only causally affect y through its influence on t . With a valid IV, we identify the causal
effect t → y if both the interventional distributions - P(t |do(i)) and P(y |do(i)) are identifiable.
A Linear SCM for an IV Estimator. Here, we show an IV estimator with a linear SCM. If we also
assume that the observed and unobserved confounders x and u come with a zero mean, we can
write down the structural equations for the causal graph in Fig. 5 as:

t = αii + α
T
z z + α

T
x x + α0 + ϵt , y = τ t + β

T
z z + β

T
x x + β0 + ϵy , (20)

where ϵt and ϵy are Gaussian noise terms with zero mean. By substituting t in the second equation
with the RHS of the first equation in Eq. 20, we get:

y = ταii + (ταz + βz )Tz + (ταx + βx )Tx + γ0 + η, (21)

where γ0 = τα0 + β0, η = τϵd + ϵy . Then estimator for the ATE (τ ) is obtained:

τ̂ = (E[y |i] − E[y |i ′])/(E[t |i] − E[t |i ′]). (22)

Here, we rely on the following assumptions: linear structural equations, homogeneous treatment
effect, valid IV, zero-mean additive noise, and unobserved confounders. What if some of them do not
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Fig. 6. Assuming that we observe all confounders x as s for the causal effect of the IV, whether a customer
writes a review on customer flowy, 2SLS can estimate the treatment effect of rating on customer flow (t → y).

hold? Can this estimator work under some conditions? In [6], Angrist et al. showed that the ratio
estimator (Eq. 22) identifies ATE when either the effect of i on t or that of i on y is homogeneous.
An IV Estimator under the potential outcome framework. The potential outcome framework
formulates the ITE of the IV i on the outcome y as:

yj (ik = 1, tl (ik = 1)) − yj (ik = 0, tl (i j = 0)), (23)

where yj (ik , tl ) and tl (ik ) are the value of y and t by setting the value of the k-th IV to ik . We also
assume the IVs are binary. With the two conditions in Definition 12, we know that i affects y via its
influence on t , so we remove i j that explicitly influences the value of yj and reduces Eq. 23 to:

[y1
j P(tj = 1|i j = 1) + y0

j P(tj = 0|i j = 1)] − [y1
j P(tj = 1|i j = 0) + y0

j P(tj = 0|i j = 0)]
= (y1

j − y0
j )(P(tj = 1|i j = 1) − P(tj = 1|i j = 0)).

(24)

We obtain the ratio estimation (Eq. 22) again when we assume homogeneous treatment effect of i
on t or that of i on y.
Two-stage Least Square (2SLS). As the IV estimator in Eq. 22 is restrictive, we may have to
control a set of features x to block the back-door paths between the IV and the outcome so that
the IV can be valid. These cases make it difficult or infeasible to use the estimator in Eq. 22. So we
introduce 2SLS [5]. Fig. 6 shows an example for such cases where x denotes the set of confounders
(e.g., whether a coupon can be found on Yelp for the restaurant) for the causal effect of whether
a customer makes a review on the customer flow i → y. To make i valid, the back-door path
i ← x → y has to be blocked. Besides, we may have multiple IVs for each treatment and multiple
treatments. Assuming there is a set of treatments t and each treatment t, j has a set of IVs i, j . In
2SLS, two regressions are performed to learn the causal effects (t,1 → y), ..., (t, j → y), ...: (1) we
fit a function t̂, j = ft, j (i, j ,x, j ) for each treatment variable t, j . (2) we learn a function y = д(t̂ ,x)
where t̂ signifies the set of treatments. Then the coefficient on D, j is a consistent estimate of the
ATE of the j-th treatment t, j on y. The intuition of 2SLS follows how we find a valid IV. In the first
stage, we estimate how much a certain treatment t, j changes if we modify the relevant IV i, j . In the
second stage, we see how the changes in t, j caused by i, j would influence y.

For practical studies in big data, Kang et al. [80] show identification of causal effects is possible
if more than 50% of the IVs are valid. They also discuss conditions that further allow identification
with more than 50% invalid IVs without knowing which IVs are valid.

3.2.2 Front-door Criterion. The front-door criterion [111] enables us to learn causal effects
t → y with unobserved confounders. With the front-door criterion we condition on a set of
variables m which satisfies the following three conditions: (1) m blocks all the directed paths
from t to y, (2) there are no unblocked back-door paths from t tom, (3) t blocks all the back-door
paths fromm to y. In other words, we say that the set of variablesm mediates the causal effect
of t on y. From the first condition, we decompose t → y to a product of t → m andm → y as:
P(y |do(d)) =

∫
M P(y |do(m))P(m |do(d))dm. The second condition means there is no confounding
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Fig. 7. Two causal graphs wherem satisfies and violates the front-door criterion

bias for the causal effect t →m: P(m |do(d)) = P(m |d). The third condition infers P(y |do(m)) by:

P(y |do(m)) =
∫
T
P(y |t ,m)P(t)dt . (25)

Then the interventional distribution corresponding to t → y can be identified as:

P(y |do(d)) =
∫
M

P(m |d)
∑
t ∈T

P(y |t ,m)P(t). (26)

We can estimate the probabilities on the RHS of Eq. 26 from observational data. For example, we can
let the set of variablesm be the ranking of a restaurant in the search results. When the ranking is
decided by the Yelp rating, (z ⊥⊥ x |t ,y),m satisfies the front-door criterion (Fig. 7a). However, when
the rankingm is affected by both the rating t and confounders z (e.g. the restaurant category), then
m is not a valid set of mediators (Fig. 7b). Different from the back-door criterion, the front-door
criterion enables us to learn causal effects when some confounders are unobserved.

3.2.3 Regression Discontinuity Design. Sometimes, treatment assignments may only depend
on the value of a special feature, which is the running variable r . For example, the treatment is
determined by whether its running variable is greater than a cut-off value r0. The study of the
causal effect of Yelp star rating r on the customer flow y is a perfect example for such a case [3].
Yelp shows the rating of a restaurant rounded to the nearest half star. For example, restaurant i
with average rating 3.26 and restaurant j with 3.24 would be shown with 3.5 and 3.0 stars. Based
on this fact, we can say r0 = 3.25 is a cut-off which defines the treatment variable. Then for a
restaurant with average rating R ∈ [3, 3.5], we say it receives treatment (D = 1) when its rounded
star rating is greater than its average rating (R ≥ r0). Otherwise, we say a restaurant is under
control (D = 0). The intuition for Sharp Regression Discontinuity Design (Sharp RDD) [3, 21] is
that the restaurants with average rating close to the cutoff r0 = 3.25 are homogeneous w.r.t. the
confounders. Therefore, what can make a difference in their factual outcomes is the treatment.
In other words, the treatments are randomly assigned to such restaurants, which leads to the
identification of the ATE. In Sharp RDD, we assume that the observed outcome is a function of the
running variable as:

yi = f (ri ) + τ ti + ϵi = f (ri ) + τ1(ri ≥ r0) + ϵyi , (27)
where f (·) is a function which is continuous at r0, τ is the ATE and ϵyu denotes the noise term. The
choice of function f (·) can be flexible. But the risk of misspecification of f (·) exists. For example,
Gelman and Imbens [49] pointed out that high-order polynomials can be misleading in RDD. In the
Yelp study, the fact that customers’ decision on which restaurant to go solely relies on the Yelp
rating supports this assumption. For many other real-world problems, however, it is not always
the case where we can obtain a perfect cutoff value like the Yelp rating r0 = 3.25 (stars) and the
minimum drinking age r0 = 21 (years old) [22]. The Fuzzy RDD method [7, 21] is developed to
handle the cases when cut-offs on the running variable are not strictly implemented. For example,
users may see the real average rating when they look into details of the restaurants and find out
that the two restaurants i and j are not that different in terms of rating. Similar to the propensity

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2020.



1:18 R. Guo et al.

score methods, Fuzzy RDD assumes the existence of a stochastic treatment assignment process
P(t |r ). But P(t |r ) is also assumed to be discontinuous. The structural equations for Fuzzy RDD is:

yi f (ri ) + τ ti + ϵyi = f (ri ) + π21(ri > r0) + ϵ ′yi , ti = д(ri ) + π11(ri > r0) + ϵt i (28)

where τ = π2
π1

is the ATE we want to estimate, ϵyi , ϵ ′yi and ϵt i are the noise terms. As τ is a division
between the causal effects 1(r > r0) → t and 1(r > r0) → y, Fuzzy RDD can be considered as an
IV method where the discontinuous variable 1(r > r0) plays the role of IV. A practical guide of
RDD can be found in [23].

3.3 Advanced Methods for Learning Causal Effects from Big Data
The success of machine learning inspires advanced methods for learning causal effects with big
data. We cover two types of methods: learning causal effects with neural networks and ensembles.
Learning Causal Effects with Neural Networks. A straightforward way to learn causal effects
with neural networks is to learn representations for features. To study the causal effect of forming a
group on receiving a loan in a microfinance platform, GloVe [116] and Recurrent Neural Networks
(RNN) [103] embed text features into a low-dimensional space. Then outcomes are inferred by
fitting a function f (h, t) on factual outcomes y. In [120], Pham and Shen propose to apply neural
networks to estimate the probability distributions such as P̂(y |t ,x) and P̂(t |x).

Moreover, a series of work learns representations of confounders instead of relying on observed
features. The assumption is that we can learn representations for the confounders, which are
considered to be a better approximation of the confounders than the features. It allows us to go
beyond the unconfoundedness assumption.With specific deep learningmodels such as the Balancing
Counterfactual Regression [77], the TARnet [138], and the Causal Effect Variational Autoencoder
(CEVAE) [97], we can learn representations zi of each instance i based on (xi ,di ,yi ). Here, we
introduce the most recent method, namely the CEVAE, which represents advances along this line.
With the recent advances in variational inference for deep latent variable models, Louizos et

al. [97] propose the CEVAE. The CEVAE consists of the inference network and the model network.
The inference network is the encoder. Given an instance (xi , ti ,yi ), the encoder learns a multivariate
Gaussian distribution N(µz , Σz ) from which we can sample its latent representation zi . Then, the
model network is the decoder that reconstructs the data from the latent representation. The
two neural networks are shown in Fig. 8. Those variational distributions (q(·)) approximate the
corresponding infeasible posterior distributions. Similar to the VAE [81] for predictive tasks, the
CEVAE is trained through minimizing the KL divergence between the data and its reconstruction.
So the loss function is formulated as:

L =
∑
i

Eq(zi |xi ,ti ,yi )[log P(xi , ti |zi ) + log P(yi |ti ,zi ) + log P(zi ) − logq(zi |xi , ti ,yi )]. (29)

The main difference between the CEVAE and the regular VAE is that, in CEVAE, there is a data
point, (ŷti , ti , x̂i ) reconstructed for each combination of instance and treatment (i, t), which enables
the inference of counterfactual outcomes once the neural networks in Fig. 8 are trained. The
comparisons in [97, 138] with three benchmark datasets (i.e., IHDP, Twins, and Jobs) show that
representation learning methods [97, 138] are the state-of-the-art for learning causal effects.
Learning Heterogeneous Causal Effects with Ensembles. Ensemble models achieve the state-
of-the-art performance in many supervised learning problems. With ensemble models, we can
train a series of weak classifiers on random subsamples of data (i.e., Bootstrapping) and make
predictions by aggregating their outputs (i.e., Bagging). Variants of ensemble models are developed
toward learning causal effects. In [65], Hill proposes to apply Bayesian Additive Trees (BART) [28]
to estimate CATE. In particular, BART takes the features and the treatment as input and output the
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Fig. 8. The neural network structures of CEVAE. The parameters, i.e., mean and variance, of each variational
distribution q(·), are outputs of the neural network layers below it.
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Fig. 9. A subtree д(x , t) in BART

distribution of potential outcomes as f (x , t) = E[y |t ,x], which returns the sum of the outputs ofQ
Bayesian regression trees as f (x , t) = ∑Q

j=1 дj (x , t). Thus, we can estimate the CATE for given x
as τ̂ (x) = f (x , 1) − f (x , 0). Each subtree is defined by the tree structure and a set of b leaf nodes{
µ j1, ..., µ jb

}
. An example of a BART subtree is shown in Fig. 9, where each interior node (rectangle)

sends an instance to one of its children. The k-th node of the j-th subtree has a parameter µ jk , i.e.,
the mean outcome of the instances classified to this node. BART has several advantages [59, 65]: (1)
it is good at capturing non-linearity and discontinuity, (2) it needs little hyperparameter tuning and
(3) it infers posterior distribution of outcomes, which allows uncertainty quantification. Hahn et
al. [59] propose to handle the problem regularization-induced confounding (RIC) with BART [58].
RIC happens when the potential outcomes heavily depend on the features rather than the treatment.

In [156], Wager and Athey propose the Causal Forest which outputs asymptotically normal and
consistent estimation of CATE. Each tree in the causal forest partitions the original covariate space
recursively into subspaces such that each subspace is represented by a leaf. Function Lj (x) returns
which leaf of the j-th causal tree in the forest a certain instance belongs to, given its features x .
Then leaf of the j-th tree is considered as a RCT such that the CATE of a given x is identified
and can be estimated by τ̂j (x) = 1

|U 1
l |
∑

i ∈U 1
l
Yi − 1

|U 0
l |
∑

i ∈U 0
l
Yi , where U t

l = {i |ti = t ,Lj (xi ) = l}
refers to the subset of instances that are sent to the l-th leaf of the j-th subtree whose treatment
is t . Then the causal forest simply outputs the average of the CATE estimation from the J trees
as τ̂ (x) = 1

J
∑

j τ̂j (x). Note that there are studies dealing with the case where heterogeneous
subpopulations cannot be identified by features such as principle stratification [44, 155].
Sometimes, an instance’s treatment or outcome depends on other instances. For example, the

customer flow of restaurants in the same areamay amount to a constant. Besides features, treatments,
and outcomes, information such as networks, temporal sequential structures can be utilized to
capture such dependencies. Learning causal effects with non-i.i.d data can be done by modeling
interference [122] and disentangling instances via i.i.d. representations [55–57].
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(b) A graph has x,2 ⊥⊥ x,3 |x,1

Fig. 10. Two exemplary causal graphs that belong to an equivalence class

While this survey focuses on observational studies, A/B tests play a crucial role in tasks like
estimating ATEs, exploring design space and attribute effects to causes for practical decision
making [15]. Bakshy et al. [15] developed a domain-specific language, PlanOut, for deploying
Internet-scale A/B tests. For A/B tests, big data raises unique challenges. Taddy et al. [148] pointed
out the problems that impede using standard tools for inferring ATEs in heavy-tailed distributions
(e.g., Internet transaction data): slower learning rate, invalid Gaussian assumption and the failure
of nonparametric bootstrap estimators on sampling uncertainty about the mean. They propose a
semi-parametric model for the data generating process of heavy-tailed data to address these issues.

4 CAUSAL DISCOVERY: LEARNING CAUSAL RELATIONS
In this section, we start with the problem statement and evaluation metrics. Then a review of
traditional causal discovery methods followed by methods for causal discovery from big data. In
learning causal relations (causal discovery), we examine whether a causal relation exists.

Definition 13. Learning Causal Relations. Given J variables, {x, j } Jj=1, we aim to determine
whether the j-th variable x, j changes if we modify the j ′-th variable x, j′ for all j , j ′.

In the running example, learning causal relations enable us to answer the questions such as: Do
features such as location causally affect the customer flow? Is location a confounder for the causal effect
of Yelp rating on customer flow? To achieve this, we postulate that causality can be detected amongst
statistical dependencies [119, 133]. An algorithm solving this problem learns a set of causal graphs
as candidates [144]. To evaluate the learned causal relations, we often compare each of the learned
causal graphs Ĝ with the ground-truth G. The concept of the equivalence class is important for
comparing different causal graphs.

Definition 14. Equivalence Class. We say that two causal graphs G and G ′ belong to the same
equivalence class iff each conditional independence that G has is also implied by G ′ and vise versa.

Figs. 10a and 10b show two causal graphs that belong to the same equivalence class. They share
the same set of conditional independence

{
x,2 ⊥⊥ x,3 |x,1

}
.

Evaluation Metrics. Here, we briefly introduce the evaluation metrics adopted by the field of
learning causal relations. The metrics can be categorized into two types: (1) the distances between
the learned causal graph and the ground truth and (2) the accuracy of discovered causal relations.
For the first category, a comprehensive study of metrics comparing learned causal graphs (Bayesian
networks) can be found in [35]. In [26], Chickering et al. counted the number of learned causal
graphs G ′ that have the ground truth G as a subgraph. The structural Hamming distance (SHD)
has been widely adopted in [117, 153]. SHD is defined as the number of edits (adding, removing or
reversing an edge) that have to be made to the learned graph G ′ for it to become the ground truth
G . In [142], the distance between two graphs are measured by the Frobenius norm of the difference
between their adjacency matrices. The second type of metrics are introduced based on the fact that
the discovery of an adjacency relation and an arrowhead can be treated as a binary classification
problem. In [4], the precision, recall (true positive rate) and false positive rate for both adjacencies
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(discovered neighbors) and arrowheads (direction of discovered causal relations) are defined as:

precision =
TP

TP + FP
, recall (tpr ) = TP

TP + FN
, f pr =

FP

TN + FP
(30)

The areas under the precision-recall and fpr-tpr (ROC) curves are widely used [13, 153].

4.1 Traditional Methods for Learning Causal Relations
Following [100], we review three families of algorithms: constraint-based, score-based, and those
based on functional causal models. The first two rely on statistical tests to discover candidate causal
graphs, and the third learns causal relations by estimating coefficients in structural equations.
Constraint-based (CB) Algorithms learn a set of causal graphs that satisfy the conditional
independence embedded in the data. Statistical tests are utilized to verify if a candidate graph
satisfies the independence based on the faithfulness assumption [144]:
Definition 15. Faithfulness. Conditional independence between a pair of variables, x, j ⊥⊥ x, j′ |z
for x, j , x, j′,z ⊆ x \

{
x, j ,x, j′

}
, can be estimated from a dataset X iff z d-separates x, j and x, j′ in the

causal graph G = (V, E) which defines the data-generation process of X .

Faithfulness means the statistical dependence between variables estimated from the data does
not violate the independence defined by any causal graph which generates the data [144]. The main
challenge is the computational cost as the number of possible causal graphs is super-exponential to
the number of variables. Hence, existing algorithms focus on reducing the number of tests.
The Peter-Clark (PC) Algorithm. The PC algorithm [144] works in a two-step fashion. First, it learns
an undirected (skeleton graph) from data. Then, it detects the directions of the edges to return
an equivalent class of causal graphs. It starts with a fully connected graph and the depth q = 0.
Then for each ordered pair of connected variables (x, j ,x, j′), it tests if the conditional independence
x, j ⊥⊥ x, j′ |z̃ is satisfied for each z̃ ⊆ N(x, j ) or z̃ ⊆ N(x, j′) of size q, where N(·) is the set of
neighbors. If the conditional independence holds, it removes the edge (x, j ,x, j′) and saves z̃ as the
separating set of (x, j ,x, j′). Once all such edges are removed, the depth q increases by 1 and this
process continues till the number of neighbors for each variable is less than q. In the second step,
we decide the directions of edges. We first determine v-structures. For a triple (x, j ,x, j′,x, j′′) with no
edge between x, j and x, j′′ , we make it a v-structure x, j → x, j′ ← x, j′′ iff x, j′ < z̃, where z̃ denotes
saved separating set of x, j and x, j′′ . Note that no new v-structures would be created as a result of
edge orientation. Then the remaining undirected edges are oriented following the three rules: (1)
we orient x, j −x, j′ to x, j → x, j′ if there exists an edge x, j′′ → x, j′ and x, j′′ and x, j are not neighbors.
(2) we orient x, j − x, j′ to x, j → x, j′ if there is a chain x, j → x, j′′ → x, j′ . (3) we orient x, j − x, j′ to
x, j → x, j′ if there are two chains x, j − x,k → x, j′ and x, j − x,l → x, j′ .

Other CB algorithms include the IC algorithm [113] and their variants [78, 88]. However, most
standard statistical tests require Gaussian or multinomial distributions. To overcome these re-
strictions, novel conditional independence tests are proposed to cover other families of distribu-
tions [45, 124, 136, 164]. To take unobserved confounders into consideration, algorithms such as
FCI (fast causal inference) and its extensions [31, 145] are proposed to search through an extended
space of causal graphs. Moreover, to go beyond observational data, Kocaoglu et al. [82] considered
the problem of designing a set of interventions with minimum cost to uniquely identify any causal
graph from the given skeleton. They show the problem can be solved in polynomial time.
CB algorithms can also be applied to non-i.i.d. data such as time series. For example, the FCI

algorithm has been adapted for time series [29, 42]. Time series models with independent noise
(TiMINo) [118], a robust algorithm based on non-linear independent tests, can avoid discovering
false relations with a misspecified model. TiMINo takes time series as input and outputs a DAG or
remains undecided.
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There are two main drawbacks of this family of algorithms. First, the faithfulness assumption
can be violated. For example, with limited samples, independence tests may even contradict each
other. Second, the causal direction between two variables may remain unknown.
Score-based (SB) Algorithms. To relax the faithfulness assumption, SB algorithms replace con-
ditional independence tests with the goodness of fit tests. SB algorithms learn causal graphs by
maximizing the scoring criterion S(X ,G ′) which returns the score of the causal graph G ′ given
data X . Intuitively, low scores should be assigned to the graphs which embed incorrect conditional
independence. For goodness of fit tests, two components need to be specified: the structural equa-
tions and the score function. First, we consider the structural equations. Structural equations are
often assumed to be linear with additive Gaussian noise [26], which introduces parameters θ . Each
structural equation describes how a variable is causally influenced by its parent variables and a
noise term. The second component is a score function which maps a candidate causal graph to a
scalar based given a certain parameterization of structural equations. The Bayesian Information
Criterion (BIC) score [134] is the most widely adopted metric S(X ,G ′) = log P(X |θ̂ ,G ′) − J

2 log(n),
where θ̂ is the MLE of the parameters, J denotes the number of variables and n signifies the number
of instances. BIC score prefers causal graphs that can maximize the likelihood of observing the data
with regularization on the number of parameters and the sample size. In [129], a similar score func-
tion is proposed based on maximum likelihood estimation with a different regularizer. Moreover,
from the Bayesian perspective, with priors over causal graph structure and parameters, posteriors
can be used to define scores. For example, Bayesian Dirichlet score [62] assumes Dirichlet prior on
parameters for the multinomial distributions of variables. With the two components fixed, the score
of a certain causal graph for a given dataset is well defined. Then we focus on searching for the
causal graphs which provide the best score for a given dataset. Searching for the causal graph with
maximal score, also known as structural learning is both NP-hard and NP-complete [25, 27]. It is not
computationally feasible to score all possible causal graphs exhaustively. Therefore, heuristics such
as GES [26] and its extension, Fast GES (FGES) [123] are proposed to reach a locally optimal solution.
When it comes to interventional data, Wang et al. [157] propose algorithms to learn causal relations
when a mixture of interventional and observational data is given, which are non-parametric and
handle non-Gaussian data well.
Greedy Equivalence Search (GES). Here we introduce GES as an example of SB algorithms. In [26],
assuming discrete variables, the BDeu criterion is used:

SBDeu (G ′,X ) = log
J∏
j=1

0.001(r j−1)qj
qj∏
k=1

Γ(10/qj )
Γ(10/qj + Njk )

r j∏
l=1

Γ(10/(riqi ) + Njkl )
Γ(10/(r jqj ))

, (31)

where r j and qj signify the number of configurations of variable x, j and parent set Paj specified by
the graphG ′. Γ(n) = (n − 1)! is the Gamma function. Njkl denotes the number of records for which
x, j = k and Paj is in the k-th configuration and Njk =

∑
l Njkl . After initialized with the equivalent

class of DAG models with no edges, two-stage greedy search is performed. First, a greedy search
is performed only to insert edges. The insertion operator Insert(x, j ,x, j′,z) takes three inputs: x, j
and x, j′ are non-adjacent nodes in the current graph, z denotes any subset of x, j′ ’s neighbors that
are not adjacent to x, j . The insertion operator modifies the graph by (1) adding the edge x, j → x, j′

and (2) directing the previous undirected edge z − x, j′ as z → x, j′ . It is worth mentioning that
undirected edges can result from the equivalent class of graphs. As a greedy algorithm, in each
iteration, for the current graph, we find the triple x, j ,x, j′,z leading to the best score (Eq. 31) and
perform the insert operator until a local maximum is reached. Then, the second greedy search is
performed initialized with the local optimum of the previous phase, only to delete edges. The delete
operator, Delete(x, j ,x, j′,z) takes two adjacent nodes x, j and x, j′ with edge x, j − x, j′ or x, j → x, j′
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and z denoting any subset of neighbors of x, j′ which are also adjacent to x, j . For each iteration,
given the current graph, the triple x, j ,x, j′,z with the highest score is selected to update the graph
with the delete operator. GES terminates when the local maximum is reached in the second phase.

Hybrid algorithms [153, 159] that exploit principled ways to combine CB and SB algorithms
have also attracted considerable attention. The MMHC algorithm [153] is proposed toward enough
scalability for thousands of variables. First, it learns the skeleton of a causal graph using the Max-
Min Parents and Children (MMPC) algorithm [152], which is similar to the CB algorithms. Then, it
orients the edges with Bayesian scoring hill climbing search, which is similar to SB algorithms.
Algorithms based on Functional CausalModels (FCMs). In FCMs, a variable x, j can be written
as a function of its directed causes Paj and some noise term ϵj as x, j = f (Paj , ϵj ). Different from
the two families of methods mentioned above, with FCMs, we are able to distinguish between
different DAGs from the same equivalent class. Here, we adopt Linear Non-Gaussian Acyclic
Model (LiNGAM) [141] as the FCM to introduce algorithms. The LiNGAM model can be written as:
x = Ax + ϵ , where x , A and ϵ denote the vector of variables, the adjacency matrix of the causal
graph [140], and the vector of noise, respectively. Columns of both x and A are sorted according to
the causal order (k(j)) of each variable, respectively. In the LiNGAM model, the task of learning
causal relations turns into estimating a strictly lower triangle matrix A which determines a unique
causal order k(j) for each variable x, j . For example, if a FCM can be specified by a LiNGAM as:

s
d
y

 =


0 0 0
1.2 0 0
0.8 1.3 0



s
d
y

 +

ϵs
ϵd
ϵy

 , (32)

then the causal order of the three variables s,d,y is 1, 2 and 3, respectively.
ICA-LiNGAM. Based on independent component analysis (ICA) [70], the ICA-LiNGAM algo-
rithm [141] is proposed to learn causal relations with the LiNGAM model, with which we estimate
the matrix A. First, we can rewrite Eq. 4.1 as x = Bϵ , where B = (I −A)−1. As each dimension of ϵ
is assumed to be independent and non-Gaussian, it defines the ICA model for the LiNGAM. Thus
we can apply ICA to estimate B. Given data X of the variables x , we use ICA algorithm [70] to
obtain the decomposition X = BS . We can learnW = B−1 by maximizing the objective:∑

j

JG (wj ) s .t . E[(wT
k x)(w

T
l x)] = δkl , (33)

where JG (wi ) = {E[G(wT
i x)] − E[G(v)]}2, G can be any nonquadratic function (e.g., G(y) = y4).v

denotes samples from a normal distributionN(0, 1) and δkl is the magnitude of dependence between
the two variables. Then an initial estimate ofA, namelyA′, is computed based onW asA′ = I −W̃ ′.
W̃ ′ is obtained by dividing each row of W̃ by the corresponding diagonal element. W̃ is calculated
by finding the unique permutation of rows ofW which is nonzero on the diagonal. Finally, to
estimate the causal order k(j) for each x, j , permutations are applied to A′ to obtain an estimate of
A which is as close to a strictly lower triangle matrix as possible. A main downfall of ICA-LiNGAM
is that ICA algorithms may converge to local optima. To guarantee the convergence to the global
optima in a fixed number of steps, Shimizu et al. propose the DirectLiNGAM algorithm [142], which
also determines A through estimating the causal ordering of variables k(j).
Recently, Additive Noise Models (ANMs) are proposed to relax the linear restriction on the

relations between variables and the distribution of noise [68, 69]. ANMs also help reduce the search
space of causal graph as data normally does not admit two ANMs with conflicts in directions of
causal effects [69, 119]. One step further, Post-nonlinear Models expand the functional space with
non-linear relations between the variables and the noise [163].
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Those algorithms for FCMs (e.g., ICA-LiNGAM) can also be adapted to handle time series data.
For example, an auto-regressive LiNGAM is proposed to learn causal relations from time series [71].

4.2 Learning Causal Relations from Big Data
The challenges raised by big data for learning causal relations include (1) handling high-dimensional
data and (2) dealing with large-scale mixed data.
Causal Discovery from High-dimensional Data. There are two questions to answer before
applying a causal discovery algorithm to high-dimensional data: (i) Is it theoretically consistent in
the high-dimensional setting? (ii) Is it scalable for high-dimensional data? Traditional CB algorithms
(e.g., the PC algorithm [144] and its variants [13]) have been shown to be applicable to high-
dimensional datasets with thousands of variables in terms of both consistency and scalability [47, 89].
Following [13], in [30], Colombo and Maathuis point out that outputs of CB methods that use
the PC algorithm for obtaining the skeleton depend on the order in which variables are given.
This can be a pronounced issue leading to highly variable results in high-dimensional settings.
Therefore, they propose a new skeleton search algorithm which can be widely used in a series of
CB algorithms including the PC, FCI, RFCI and CCD algorithms [31, 125, 144].
The case is different for SB algorithms as the traditional work leaves the consistency and

scalability in the high dimension setting as open problems [107]. In [123], Ramsey et al. examine
two modifications to address the scalability problem of the GES algorithm [26]: (1) FGES and (2)
FGES with Markov Blanket Search (FGES-MB). FGES-MB modifies the first stage of GES by only
adding edges found by two-hop markov blanket search on each variable [123]. Their experiments
show the FGES algorithm with BIC score and FGES-MB can maintain high precision and good
recall when the causal graph has one million Gaussian variables with average degree 2. Nandy et
al. [107] find that we can theoretically achieve the consistency in high dimensional settings when
adaptive restrictions are added to the GES algorithm [26] on the search space. The proposed variant
of GES, ARGES, restricts the choice of variable z in the first stage of the GES algorithm to those
form v-structures (x, j ,x, j′, z). Then theoretically, they show that ARGES is consistent in several
sparse high-dimensional settings. Experimental results show ARGES scales to 400 samples of 2,400
variables and outperforms the baselines (MMHC [153], PC [144] and GES [26] etc.) measured by
the ROC curve. When it comes to hybrid algorithms, as we mention in Section 4.1, the MMHC
algorithm [153] can scale to thousands of variables.
Learning Causal Relations from Mixed Data. Big data often contains both continuous and
discrete variables, which is referred to as mixed data. Mixed data poses challenges for learning
causal relations as continuous and discrete variables often require different independence tests (for
CB methods) and goodness of fit tests (for SB methods). Raghu et al. [121] performed an extensive
empirical study on the CB and SB methods for learning causal relations with mixed data. To adapt
CB algorithms to mixed data, a straightforward solution is to consider the independence tests that
handle mixed data such as a multinomial logistic regression and a conditional Gaussian test (CG). In
the experiments, the authors focused on the small sample high dimension setting, which often fits
the case of biomedical data. Empirical results show that using these independence tests for mixed
data can significantly boost the recall of discovered causal relations when there are 100 samples for
100 variables. In [135], authors find that modeling the joint distribution of both continuous and
discrete variables with mixed graphical models (MGMs) [91] as a preprocessing step can improve
CB and SB methods with mixed data. Note that the joint distribution implies a graph structure over
these heterogeneous variables.
For scalable causal discovery on high-dimensional large-scale mixed data, Andrew et al. [4]

derived the degenerate Gaussian (DG) score and proved its consistency. With the four metrics: the
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precision and recall of arrowheads and those of adjacencies, results show that DG outperformed
CG [121], MGM [91] and copula PC [33] on synthetic datasets with 500 variables and 1,000 samples.

At the end, we point out that most of the existing algorithms share a limitation: they can only be
applied to discovering the causal relations of variables whose samples have been observed in the
training data. Developing models that can be generalized to new variables remain an open problem.

5 CONNECTIONS TO MACHINE LEARNING
This section covers connections between learning causality and supervised and semi-supervised
learning, domain adaptation, and reinforcement learning. We explore two aspects: How can causal
knowledge improve machine learning? How can machine learning help learning causality?

5.1 Supervised Learning and Semi-supervised Learning
Supervised Learning. From a data perspective, some problems of learning causality can be reduced
to supervised learning or semi-supervised learning problems.

Here, we discuss how supervised learning algorithms can help learning causality. The problem
of learning causal relations can be transformed into as a prediction problem once we label the
data with causal relations. In particular, suppose we are given labeled training data of the form
(c1,a1), ..., (cN ,aN )where each c j is an i.i.d. dataset c j = (X1,y1), ..., (XNj ,yNj ) sampled from a joint
distribution Pj (x ,y) and each dataset has an additional label aj ∈ (→,←) describing whether the
dataset is causal x → y or anti-causal y → x . Anti-causal means that the label y is the cause of the
features x . The main challenge here is to obtain the label of causal direction. For some datasets, the
causal relations are naturally revealed [96]. In addition, we can leverage the knowledge that a dataset
is causal or anti-causal to improve supervised learning models. Causal regularization [14, 139] is
proposed to learn more interpretable and generalizable models. In [14], a causal regularizer guides
predictive models towards learning causal relations between features and labels. It is assumed that,
besides the predictive model, there is a classifier ci = P(x i does not cause y) outputs whether a
feature x i causes the label y. Then the objective function of a predictive model with the causal
regularizer is formulated as:

arg min
w

1
n

n∑
j=1
L(x j ,yj |w) + λ

m∑
i=1

ci |w i |, (34)

where L denotes the loss function of the predictive model with parametersw . Intuitively, the lower
the probability of a feature to be a cause, the more penalty will be added to its corresponding
weight, which eventually encourages the model to pay more attention to those features that are
more likely to be causes of the label. In [83], the following causal regularizer is proposed to set
each feature as the treatment and learn sample weights such that the distribution of the two groups
can be balanced w.r.t. to each treatment (feature):

m∑
j=1
| |
XT
,−j (w ⊙ I, j )
wT I, j

−
XT
,−j (w ⊙ (e − I, j ))
wT (e − I, j )

| |22 , (35)

wherew ∈ Rn signifies the sample weights, e denotes the n × 1 vector with all elements equal to 1,
X, j and X,−j are the j-th column of the feature matrix and the matrix of remaining features, Ii, j
refers to the treatment status of the i-th instance when the j-th feature is set as the treatment. The
authors added a constraint to the original loss function of a logistic regression model to ensure the
value of this causal regularizer is not greater than a predefined hyperparameter γ ∈ R+. Doing this
can help identify causal features and construct robust predictive model across different domains.
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Semi-Supervised Learning (SSL). A machine learning problem can be either causal or anti-
causal [133]. For example, in hand written digits recognition [90], which digit to write is first
determined, then the digit would be represented as a matrix of pixel values. Such causal structure
has implications for SSL. In SSL, the target is to improve the quality of estimated P(y |x) with
additional unlabeled instances which can provide information of the marginal distribution P(x). We
can first consider the cases when semi-supervised learning would fail. For example, when p(x) is a
uniform distribution, observing more unlabeled instances provides no information about P(y |x). In
contrast, in the case of representation learning, if h contains hidden causes of the features x , and
the label y is one of the cause of x , then predicting y from h is likely to be easy [51]. Specifically,
the true data-generating process implies h is a parent of x , and thus, p(h,x) = P(h)P(x |h). So
the marginal distribution is P(x) = Eh[P(x |h)]. With P(y |x) = P (x |y)P (y)

p(x ) , we know P(x) directly
affects P(y |x). Therefore, the causal structure of P(x) can help the prediction of P(y |x), which
achieves the target of SSL. However, the number of causes can be extremely large. For example, a
positive Yelp review can result from good service, delicious food, cheap price, or decent restaurant
environment. Brute force solutions are not feasible as it is often impossible to capture most of
the causes. So, we need to figure out what causes to encode for a certain target y. Criteria such
as mean squared error on reconstructed features are used to train autoencoders and generative
models, which assumes that a latent variable is salient iff it affects the value of most features.
However, there can be tasks where the label is only associated with few causes. For example, to
predict the customer flow of truck drivers in fast food restaurants near highway, few hidden causes
may be useful. Therefore, the criteria need to be adaptable in accordance with the task. Generative
Adversarial Networks (GAN) [52] are proposed to address this issue for images. GAN can adapt
its criteria s.t. the latent variables (e.g., ears of human in human head images) that only affect the
value of few features can also be learned as representations. Making optimal decisions on which
causes we learn representation for is still an open problem.

Janzing and Schölkopf [75] consider a special case of SSL: lety = f (x) and x ,y ∈ [0, 1], where f is
an unknown anti-causal model. Given n−1 labeled instances {(xi ,yi )}n−1

i=1 , we seek to infer the label
yn = f (xn) of an unlabeled instance xn . In this setting, it is proved that SSL outperforms supervised
learningwhen P(x) and f are dependent and a certain independence between P(y) andд = f −1 holds.
The independence P(y) ⊥⊥ д is assumed and can be defined asCov[P(y), logд′] = 0, whereд′ denotes
the derivative of д and logд′, P(x) ∈ [0, 1]. Given that, it can be shown that Cov[P(x), log f ′] > 0,
which means P(x) contains information of the function f we aim to learn. In addition, the fact
that SSL only works in the anti-causal direction can help learn causal relations [137]. As shown
above, if the problem is anti-causal, we expect that better knowledge of P(x) helps prediction of
P(y |x) as they are dependent. In contrast, if it is a causal problem, then knowing P(x) barely helps
us learn P(y |x). Therefore, comparing the errors of estimations on P(y |x) and P(x |y) enables us to
determine the direction of causality. In particular, Gaussian process (GP) regression models are
trained to estimate P(x |y) as:

P(x |y,y∗) =
∫
Z,θ

P(z,θ ,x |y∗,y)dzdθ ≈
∫
Z,θ

P(x |y,y∗,z,θ )P(z,θ |y∗)dzdθ , (36)

where z signifies the latent variables and y∗ = (y1, ...,yn−1) are the observed data points.Z and θ
are the set of possible values of the latent variables and the model parameters, respectively. The first
factor P(x |y,y∗,z,θ ) is the supervised GP regression and the second factor P(z,θ |y∗) denotes the
posterior distribution over z and θ given observed labels y∗. Assuming uniform priors for z and θ ,
using Bayes’s rule p(z,θ |y∗) = p(y∗ |z,θ )p(z )p(θ )

p(y∗) ∝ p(y∗ |z,θ ) which is parameterized by a Gaussian
distribution defined by GP-LVM [150]. Thus, we can estimate P(x |y,y∗) = 1

m
∑

i p(x |y,y∗,zi ,θ i )
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with m MCMC samples from p(x ,θ |y∗). In a similar way, we can find that p(x |y,y∗,zi ,θ i ) is
also proportional to a Gaussian distribution defined by GP-LVM. Thus, we can estimate P(x |y)
as mentioned above and P(y |x) by repeating the procedure with x and y swapped. Finally, log
likelihood of the two estimates reveals the causal direction. However, it is an open problem to scale
such approaches (regression for causal discovery) to high-dimensional, noisy or non-i.i.d. data.

There exists a special type of SSL regarding learning causal effects. Given massive data on (x , t)
but small samples with observed outcomes y, Hahn et al. [59] highlighted that information of
P(x , t) can be brought to help the estimation of P(y |x , t).

5.2 Domain Adaptation
Domain adaptation [19, 34] studies how to adapt machine learning models trained in some domains
to the others. One application of domain adaptation is to improve prediction accuracy when we
have plenty of labeled data from the source domain (e.g., Yelp review) but not for the target domain
(e.g., reviews from another website). Domain adaptation is related to learning causality by invariant
prediction in different domains [117], assuming that causal relations do not change across domains.
Given a target variable ye and m predictor variables xe = (xe1 , ...,xem) from different domains
e ∈ {1, ...,E}, the goal is to predict the value of y. Invariant prediction assumes that the conditional
P(y |Pay ) is consistent for all domains, where Pay is a set of direct causes of y. Formally,

P(ye |Paey ) = P(yf |Pafy ). (37)

The assumption is valid when the distributions are induced by an underlying SCM and the different
domains correspond to different interventional distributions where y is not under intervention.
Then we can conclude that (1) invariant prediction is achieved and (2)Z∗ is the set of estimated
causes of the target variable y. In [117], the authors propose a method to estimate Pay . Assuming
that the collection S consists of all subsets S of features that result in invariant prediction, satisfying
P(ye |xeS ) = P(yf |x fS ), the variables appearing in each such set S form the estimated causes of the
label Pay . Finally, a valid subset S∗ that achieves the best performance in the source domains is
selected as the features for cross domain prediction. This is because the selected subset is guaranteed
to be optimal in terms of domain generalization error. Due to the independent mechanism assump-
tion [119, 128], the selected subset is also robust against arbitrary changes of marginal distribution
of predictors in the target domains. Similar results for domain generalization have been obtained
through a global balancing approach [83] and a causal feature selection method [110]. They are
based on sample re-weighting. In [83], the proposed model, Deep Global Balancing Regression
(DGBR), leverages an auto-encoder model to map data into a latent space before reweighting instead
of directly reweighting the original samples [110]. We summarize the usage of the low-dimensional
representations of DGBR in two ways: (1) They are used in the global balancing regularizer, where
each variable is successively set as the treatment variable. Then we balance all the variables via
learning global sample weights. (2) We can predict outcomes based on the representations using
regularized regression. The causal regularizer of DGBR is:

p∑
j=1

ϕ(X,−j )T (w ⊙ X, j )
wTX, j

−
ϕ(X,−j )T (w ⊙ (e −X, j ))

wT (e −X, j )

2

2
, (38)

wherew ∈ Rn signifies the sample weights, e denotes the n × 1 vector with all elements equal to
1, X, j and X,−j are the j-th column of the feature matrix and the matrix of remaining features. In
addition, the objective function is a weighted loss of logistic regression along with a constraint to
limit the value of this causal regularizer not greater than a predefined positive hyperparameter.
While for prediction under concept drift [158], where Eq. 37 is violated but themarginal distributions
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of the predictors remain the same, one may allow apriori causal knowledge to guide the learning
process and circumvent the discrepancies between the source and target domains [115], a.k.a.
causal transportability. The study of transportability seeks to identify conditions under which
causal knowledge learned from experiments can be reused in different domains with observational
data only. A formal definition of causal transportability can be referred to [115]. In [17], the authors
further provide a necessary and sufficient condition to decide, given assumptions about differences
between the source and target domains, whether transportability is feasible.

5.3 Reinforcement Learning
Reinforcement learning (RL) [147] is studied for solving sequential decision-making problems. The
key variables in RL are the action a, the state z, and the reward y. When an agent performs an
action, it reaches the next state and receives a reward. The Markov decision process is often adopted,
where the next state zt+1 depends on the current state zt and action at and the reward of the next
state yt+1 is determined by zt , zt+1 and at . A RL model learns a policy π (at , zt ) = P(at |zt ) which
determines which action to take given the current state. The objective is to maximize the sum of
the rewards. In the running example, we can assume that the state zt represents the location of
a restaurant, the action at can be moving to a certain place or staying at the same place and the
reward is the customer flow y. In each time step, the restaurant owner decides which action to take
and then observes the customer flow. Then the owner will make decisions for the next time step
based on whether the customer flow increases or not.
Unobserved Confounders in RL. Unobserved confounders raise issues of learning policies for
RL models such as multi-armed bandits (MAB) [16]. Without knowing the causal model, MAB
algorithms can perform as badly as randomly taking an action in each time step. Specifically, the
Causal Thompson Sampling algorithm [16] is proposed to handle unobserved confounders in MAB
problems. The reward distributions of the arms that are not preferred by the current policy can
also be estimated through hypothetical interventions on the action (choice of arm). By doing this
we can avoid confounding bias in estimating the causal effect of choosing an arm on the expected
reward. To connect causality with RL, we view a strategy or a policy in RL as an intervention [119].
Unbiased Reward Prediction. Given trajectories (actions, states and rewards) of an observed pol-
icy, we can utilize causal inference methods to predict rewards for another policy, especially
for Episodic RL (ERL) problems. ERL is a subclass of RL where the state is reset to the de-
fault value after a finite number of actions. ERL helps decision-making in many applications
such as card games and advertisement placement [20]. One popular approach leverages IPTW
for predicting reward of ERL models. In IPTW, a treatment refers to an action and the policy-
specific propensity score is defined as the probability to perform the selected action given the
observed state. Particularly, given trajectories produced by running an observed policy π L times
[(a1(1), z1(1)), (a2(1), z2(1)), ...], ..., [(a1(n), z1(n)), (a2(n), z2(n)), ...], we can estimate the expected
sum of rewards of a policy π̃ with IPTW as:

ξ̂ :=
1
L

L∑
l=1

y(l)
∏K

k=1 π̃ (ak (l)|zk (l))∏K
k=1 π (ak (l)|zk (l))

, (39)

where K is the number of time steps in each episode. Improved variants are proposed in [20].
RL with Auxiliary Causal Knowledge. There is a line of work to improve RL models with
causal knowledge as side information [87, 160]. Here, we use the Causal Bandit (CB) problem [87]
as an example. In this problem, given J binary variables x,1, ...,x, J and their causal graph but
not the causal mechanisms x, j = f (Paj , ϵj ), we aim to find the intervention that is most likely
to set a specified variable x,k to 1. An intervention is defined as a vector a ∈ {∗, 0, 1} J , where
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aj , ∗ means x, j is set to aj . For exploration, a CB algorithm learns µ(a) = P(x,k = 1|do(a)), the
probability that the target x,k is set to 1 by a. For exploitation, a CB algorithm minimizes the regret
R = µ(a∗) −E[µ(â)], where a∗ is the optimal action and â denotes the algorithm’s selection. In [87],
the parallel bandit (PB) algorithm is proposed to solve this problem with guarantee to outperform
non-causal MAB algorithms. Given total rounds L, in first L/2 rounds, the PB algorithm collects
observational data by doing intervention a = [∗, ..., ∗]. Then it analyzes the observational data
for each intervention a = do(x, j = x) to estimate the reward as µ̂(a) = 1

La

∑L/2
l=1 1(xl, j = x, j (a))

and probabilities as p̂a = 2La
L , q̂j = p̂do(x, j=1), where La =

∑L/2
l=1 1(xl, j = x) denotes the number

of times we observe what a could have done in the observational data. Next, we create the set
of rarely observed actions as A ′ = {a |p̂a ≤ 1

m̂ }, where m̂ is a threshold defined by the vector of
interventional distributions q. Then we uniformly sample a ∈ A ′ and observe the value of x,k . At
the end, we compute E[x,k ] of resulting each action as the estimated reward µ̂(a) and select the
one with the largest µ̂(a). Other work bridging RL and causality includes causal approaches for
transfer learning in RL models [162] and data-fusion for reinforcement learners [43].
At the end, we summarize advantages and disadvantages of causal machine learning. The

advantages of machine learning with causality include: (1) invariant prediction under environment
changes [83, 110, 117], (2) model generality and interpretability [14, 139], and (3) performance
improvement with theoretical guarantee [87, 160]. On the other hand, causal machine learning
mainly faces the challenges of insufficient amount of data. Causal machine learning algorithms
may require ground truth of counterfactuals [77, 138] or interventional data [87, 160] for training
or evaluation, which can be difficult to collect.

6 CONCLUSIONS AND SOME OPEN PROBLEMS
Recent attempts have been made to solve the problem of learning causality with more data and less
knowledge than traditional studies. Although existing efforts may not directly address learning
causality with big data, they build the foundation of data-driven studies for learning causal effects
and relations. Another highlight of this work is the connections between causality and machine
learning. We aim to demonstrate that it is possible to leverage the connections between them in
achieving better solutions for both causal and predictive problems. Moreover, machine learning
models can benefit from exploiting learned causal knowledge in Section 5.

Fig. 11 shows a summary of the contents covered in this survey. SCMs and the potential outcome
framework enable us to formulate problems of learning causality with mathematical languages.
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Then, we cover the two types of problems: learning causal effect (causal inference) and relations
(causal discovery) with data. The methods for learning causal effects with three types of data are
presented: (1) i.i.d. data and (2) non-i.i.d. data where we assume that the unconfoundedness is satis-
fied, and (3) data with unobserved confounders. Next, we discuss how to learn causal relationships
from two types of data: i.i.d. data and time series data. Finally, we discuss the connections between
learning causality and machine learning. We discuss how we can connect learning causality to
machine learning methods that solve the three families of problems: supervised and semi-supervised
learning, domain adaptation and reinforcement learning. We describe the connections by answering:
(1) how learning causality yields better prediction in the machine learning problem and (2) how
machine learning techniques can be applied for learning causality?
Existing research demonstrates how to learn causality with data paves the way for more work

toward addressing the challenges of big data. From the data perspective, we present some open
problems to achieve the great potential of learning causality with data:
• Many problems in learning causality from observational data remain open. Potential prob-
lems include handling (1) anomalies [1, 37], (2) treatment entanglement [151], (3) complex
treatments [95] (e.g., image and text as treatment), (4) temporal observations [102, 132].
• Using causal knowledge to improve machine learning algorithms remains an open area.
Potential research directions include: (1) causal interpretation of black box deep learning
algorithms [105], (2) learning causality-aware models for robustness [9] and fairness [85].

APPENDIX
To facilitate development, evaluation and comparison of methods for learning causality, we create
the open source data index [24] (https://github.com/rguo12/awesome-causality-data) and algorithm
index (https://github.com/rguo12/awesome-causality-algorithms). They are categorized by the
problem and the type of data.
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