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Abstract
Causal inference has numerous real-world applica-
tions in many domains, such as health care, mar-
keting, political science, and online advertising.
Treatment effect estimation, a fundamental prob-
lem in causal inference, has been extensively stud-
ied in statistics for decades. However, traditional
treatment effect estimation methods may not well
handle large-scale and high-dimensional heteroge-
neous data. In recent years, an emerging research
direction has attracted increasing attention in the
broad artificial intelligence field, which combines
the advantages of traditional treatment effect esti-
mation approaches (e.g., propensity score, match-
ing, and reweighing) and advanced machine learn-
ing approaches (e.g., representation learning, ad-
versarial learning, and graph neural networks). Al-
though the advanced machine learning approaches
have shown extraordinary performance in treatment
effect estimation, it also comes with a lot of new
topics and new research questions. In view of the
latest research efforts in the causal inference field,
we provide a comprehensive discussion of chal-
lenges and opportunities for the three core compo-
nents of the treatment effect estimation task, i.e.,
treatment, covariates, and outcome. In addition, we
showcase the promising research directions of this
topic from multiple perspectives.

1 Introduction
Causality is naturally and widely used in various disciplines
of science to discover causal relationships among variables
and estimate causal effects of interest. The most effective
way of inferring causality is to conduct a randomized con-
trolled trial, randomly assigning participants to a treatment
group or a control group. As the randomized study is con-
ducted, the only expected difference between the control and
treatment groups is the outcome variable being studied. How-
ever, in reality, randomized controlled trials are always time-
consuming and expensive. In addition, ethical issues also
need to be considered in most randomized controlled trials,
which essentially limits its applications. Therefore, observa-
tional data provide a tempting shortcut instead of randomized

controlled trials. Observational data are obtained by the re-
searcher simply observing the subjects without interference.
That means the researchers have no control over treatments
and subjects and study the subjects by simply analyzing the
recorded data. For causal inference, we want to answer ques-
tions like “Would this patient have different results if she re-
ceived a different medication?” Answering such counterfac-
tual questions is challenging due to two reasons. First, we
only observe the factual outcome and never the counterfac-
tual outcomes that would potentially have happened if the
subjects were assigned different treatments. The second one
is that treatments are typically not assigned randomly in ob-
servational data, which may lead to the treated population
differing significantly from the general population, i.e., the
well-known selection bias problem.

In recent years, the magnificent bloom of the machine
learning area has enhanced the development of causal infer-
ence approaches. Powerful machine learning methods, such
as decision trees, representation learning, deep neural net-
works, adversarial learning, and so on, have been applied
to estimate the potential outcomes more accurately. In ad-
dition to ameliorating the outcome estimation model, ma-
chine learning methods also provide a new aspect of han-
dling different types of treatments, leveraging various types
of covariates, and mitigating selection bias in different forms.
Benefiting from the deep bonding between causal inference
and machine learning methods, the treatment effect estima-
tion task has greatly progressed. However, in view of the lat-
est research efforts in the causal inference field, we conclude
three major challenges from the core components of the treat-
ment effect estimation task, i.e., treatment, covariates, and
outcome:

• [Treatment]: How could we deal with different types
of treatment, such as (1) binary, (2) multiple, (3) contin-
uous scalar treatments, (4) interrelated sequential treat-
ments, and (5) structured treatments (e.g., graphs, im-
ages, texts)?

• [Covariate]: How could we handle the different types of
covariates, such as confounders (observed and hidden),
adjustment, instrumental, and spurious variables by rep-
resentation disentanglement, feature selection, and so
on?

• [Outcome]: When estimating the factual and counter-
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Figure 1: Three major challenges from the core components of the
treatment effect estimation task, including treatment, covariates, and
outcome.

factual outcomes, how could we overcome the selection
bias among different treatment groups (for example, dis-
tribution invariance, domain adaptation, local similarity,
domain overlap, mutual information, and so on)?

As shown in Figure 1, different from the previous surveys
based on the taxonomy of the methodologies for treatment
effect estimation, to the best of our knowledge, this is the
first paper that provides a comprehensive survey of challenges
abreast of the current academic frontier of treatment effect
estimation tasks. In our work, we first consolidate and sum-
marize the previous survey papers about causal inference in
Section 2. Then, we formally define the problem of treatment
effect estimation in Section 3. Further, from three points of
view, i.e., treatment, covariate, and outcome, we describe the
research challenges, present the recent advances on these top-
ics, and discuss research opportunities in Section 4. Finally,
we conclude this survey paper in Section 5.

2 Previous Work
There exist several surveys that discuss a particular cat-
egory of the causal effect estimation methods, such as
the survey of matching-based methods [Stuart, 2010], the
survey of tree-based and ensemble-based methods [Athey
and Imbens, 2015], and the review of dynamic treatment
regimes [Chakraborty and Murphy, 2014]. For the structural
causal model, it is suggested to refer to the survey [Pearl,
2009a] or the book [Pearl, 2000]. There is also a survey
about learning causality from observational data [Guo et al.,
2018] whose content ranges from inferring the causal graph
from observational data, structural causal model, potential
outcome framework, and their connection to machine learn-
ing. [Cui et al., 2020] introduce both traditional and state-
of-the-art representation learning algorithms for treatment ef-
fect estimation and showcase promising applications of these
methods in different application domains. A recent survey pa-
per [Yao et al., 2021] mainly focuses on the theoretical back-
ground of the potential outcome framework, the representa-
tive methods across the statistic domain and machine learning
domain, and how this framework and the machine learning

area enhance each other. [Zeng and Wang, 2022] provide a
review of the past work on causal inference, focusing mainly
on potential outcomes framework and causal graphical mod-
els. [Feder et al., 2022] consolidates research on causality
in NLP and provides unified definitions, benchmark datasets,
and clear articulations of the challenges and opportunities in
applying causal inference to the textual domain. [Ma and
Li, 2022] envision the challenges of causal effect estimation
with graphs and then summarize representative approaches
of causal effect estimation with graphs in recent years. In ad-
dition, the existing causal inference methods mainly focus on
source-specific and stationary observational data. Such learn-
ing strategies assume that all observational data are already
available during the training phase and from only one source.
However, in the era of big data, we face new challenges in
causal inference with observational data, i.e., the extensibil-
ity for incrementally available observational data, the adapt-
ability for extra domain adaptation problems except for the
imbalance between treatment and control groups, and the ac-
cessibility for an enormous amount of data. The position pa-
per [Chu and Li, 2023] formally defines this kind of problem
about continual treatment effect estimation, describes its re-
search challenges, and then presents possible solutions to this
problem.

Different from the aforementioned surveys based on tra-
ditional methodology-based taxonomy for causal inference,
our paper might be the first attempt to provide a comprehen-
sive survey of challenges aiming at the core components of
the treatment effect estimation task, i.e., treatments, covari-
ates, and outcomes, abreast of the current academic frontier
of treatment effect estimation tasks.

3 Problem Definition
Suppose that the observational data contain n units, and each
unit received one of the treatments. Let X denote all observed
variables, Y denote the outcomes, and T be the treatment in
the observational data.

Let ti denote the treatment assignment for unit i; i =
1, ..., n. Under the basic binary treatment case, ti = 1 is
for the treatment group and ti = 0 for the control group.
The outcome for unit i is denoted by yit when treatment t is
applied to unit i. For observational data, only one of the po-
tential outcomes is observed. The observed outcome is called
the factual outcome, and the remaining unobserved potential
outcomes are called counterfactual outcomes.

To estimate the treatment effect from observational data,
potential outcome framework [Splawa-Neyman et al., 1990;
Rubin, 1974] is one of the most popular methodologies,
which aims to estimate such potential outcomes and then cal-
culate the treatment effect. The individual treatment effect
(ITE) for unit i is the difference between the potential treated
and control outcomes and is defined as:

ITEi = yi1 − yi0. (1)
The average treatment effect (ATE) is the difference be-

tween the mean potential treated and control outcomes, which
is defined as:

ATE =
1

n

n∑
i=1

(yi1 − yi0). (2)



The success of the potential outcome framework is based
on the following assumptions [Imbens and Rubin, 2015],
which ensure that the treatment effect can be identified.

Assumption 1. Stable Unit Treatment Value Assumption
(SUTVA): The potential outcomes for any unit do not vary
with the treatments assigned to other units, and, for each unit,
there are no different forms or versions of each treatment
level, which lead to different potential outcomes.

Assumption 2. Consistency: The potential outcome of treat-
ment t is equal to the observed outcome if the actual treatment
received is t.

Assumption 3. Positivity: For any value of x, treatment as-
signment is not deterministic, i.e.,P (T = t|X = x) > 0, for
all t and x.

Assumption 4. Ignorability: Given covariates, treatment
assignment is independent of the potential outcomes, i.e.,
(y1, y0) ⊥⊥ t|x.

These assumptions are fundamental to treatment effect
estimation. However, in practice, for different types of
treatments (multiple, continuous, interrelated sequential, or
structured treatments), the existence of hidden confounders,
and various methodologies, these assumptions cannot always
hold. They shall be relatively relaxed or modified according
to practical considerations.

4 Research Challenges and Opportunities
In this section, we detail the new challenges regarding treat-
ments, covariates, and outcomes, present the latest research
methodologies based on machine learning for these chal-
lenges, and also discuss potential research opportunities.

4.1 Treatment
We first elaborate on the difficulties when facing different
types of treatment, such as binary, multiple, continuous scalar
treatments, interrelated sequential treatments, and structured
treatments (e.g., graphs, images, texts). According to the
characteristics of various treatment types, we will present
them in two parts: (1) binary, multiple, continuous, and in-
terrelated sequential treatments; (2) structured treatments.

4.1.1 Binary, Multiple, Continuous, and Sequential
Treatments
As shown in Figure 2, for the binary, multiple, continuous,
and sequential treatment scenarios, we provide a unifying ter-
minology that will enable researchers to coalesce and com-
pare existing methods. Suppose that the observational data
contain n units and that each unit goes through one poten-
tial path, including several treatment stages. In each poten-
tial path, the unit i can sequentially choose one of the two or
multiple treatments T at each stage S, and finally, the cor-
responding outcome Y could be observed at the end of the
path. Let {tis; ts = 1, ..., nts , i = 1, ..., n, and s = 1, ..., ns}
denote the treatment assignment for unit i at stage s. There
are in total ns treatment stages and nts treatment assignments
at stage s. Due to the existence of different treatment assign-
ments at each treatment stage, for the whole population, we

Figure 2: The illustrations of binary, multiple, continuous, and se-
quential treatments.

can observe several potential paths {p; p = 1, ..., np}. How-
ever, each unit can only go through one potential path, in-
cluding a sequence of stages. Therefore, only one of the po-
tential outcomes is observed at the end of the path according
to the actual treatment assignments. This observed outcome
is called the factual outcome, and the remaining unobserved
potential outcomes are called counterfactual outcomes. The
factual outcome for unit i along the actual treatment stages is
denoted by yiF , and the counterfactual outcome is denoted by
yiCF . Let X ∈ Rd denote d observed variables of a unit. The
observational data can be denoted as {{xi, tis, y

i
F }

ns
s=1}ni=1.

For simplicity, the unit superscript i will be omitted unless
explicitly needed.
Binary Treatments. If ns = 1 and nt1 = 2, there is only
one treatment stage with two treatment choices. A unit only
needs to choose once, between the two treatments. This set-
ting is exactly the conventional binary treatment effect esti-
mation task. One practical example of this conventional task
is to evaluate the treatment effects of two different medica-
tions for one disease. By exploiting the observational data,
including the treatment and control groups, we can only get
one factual outcome for each patient. Thus the core task is
to predict what would have happened if a patient had taken
the other medication. This conventional task has been exten-
sively studied in the literature, such as TARNet [Johansson
et al., 2016], CFR [Shalit et al., 2017], BNR-NNM [Li and
Fu, 2017], CEVAE [Louizos et al., 2017], SITE [Yao et al.,
2018], GANITE [Yoon et al., 2018], and Dragonnet [Shi et
al., 2019].
Multiple Treatments. If ns = 1 and nt1 > 2, there is
only one treatment stage with multiple treatments. This is the
conventional multiple treatment effect estimation task. Usu-
ally, the binary treatment models can be effortlessly extended
to multiple treatment models [Lopez and Gutman, 2017],
such as propensity score estimation using generalized boosted
models [McCaffrey et al., 2013], the counterfactual inference
based on the idea of augmenting samples within a minibatch
with their propensity-matched nearest neighbors [Schwab et
al., 2018], multi-task adversarial learning [Chu et al., 2022b],
BART[Hu et al., 2020], and a deep generative model with
task embedding [Saini et al., 2019].



Figure 3: The instruction modes example. The solid line repre-
sents each student’s potential choice at each stage, and the dotted
line refers to the final potential outcome along the corresponding
path.

Continuous Treatments. If ns ≥ 1 and ts is continuous, this
is the continuous treatment effect estimation task. Continuous
treatments arise in many fields, including healthcare, public
policy, and economics. With the widespread accumulation
of observational data, estimating the average dose-response
function while correcting for confounders has become a crit-
ical problem. Due to the infinite counterfactuals for contin-
uous treatments, adjusting for selection bias is significantly
more complex than for binary or multiple treatments. Thus,
unlike the multiple treatments, standard methods for adjust-
ing for selection bias for discrete treatments cannot be easily
extended to handle bias in the continuous setting.

The DRNet [Schwab et al., 2020] consists of a three-level
architecture with shared layers for all treatments, multi-task
layers for each treatment, and additional multi-task layers for
dosage sub-intervals. Specifically, for each treatment, the
dosage interval is subdivided into several equally sized sub-
intervals, and a multi-task head is added for each sub-interval.
DRNets do not determine these intervals dynamically and
thus much of this flexibility is lost. SCIGAN [Bica et al.,
2020] is flexible and capable of simultaneously estimating
counterfactual outcomes for several different continuous in-
terventions. The key idea is to use a modified GAN model to
generate counterfactual outcomes. VCNet [Nie et al., 2021]
proposes a novel varying coefficient neural network that im-
proves model expressiveness while preserving the continuity
of the estimated average dose-response function. Second, to
improve finite sample performance, we generalize targeted
regularization to obtain a doubly robust estimator of the dose-
response curve. CausalEGM [Liu et al., 2022] is an encoding
generative model that can be applied in binary and continuous
treatment settings. The CausalEGM model consists of a bidi-
rectional transformation module and two feed-forward neu-
ral networks. The bidirectional transformation module com-
posed of two generative adversarial networks (GANs) is used
to project the covariates to a low-dimensional space and de-
couple the dependencies.
Sequential Treatments. If ns > 1 and nts ≥ 2, there are
several treatment stages, with two or multiple treatments at
each stage. Each unit goes through one path and needs to
make ns treatment decisions. At the end of the path, we can
only observe one outcome along the actual path.

For example, during the COVID-19 pandemic that began in
late 2019 and continues today, the instruction mode in univer-
sities has experienced substantial changes. The COVID-19

pandemic has forced most educational institutes worldwide
to resort to an “online + in person” mode of education de-
livery. In some universities, the students can choose online
remote learning or in-person learning with masks and social
distancing. The course instructors can provide live video-
based sessions for the students and/or upload their recordings
to the online learning platforms for them to watch. Further,
in live video-based learning, the students can choose to turn
the camera on or off. Therefore, each student will follow one
sequential behavior path “in person or online learning→ pre-
recorded video-based or live video-based learning → cam-
era on or off”, as illustrated in Figure 3. Different instruc-
tion modes influence students’ social, emotional, and mental
well-being and academic achievement. Each student makes
their own choices at each stage, so various potential paths ex-
ist. Intuitively, potential paths are a series of possible choices
of treatments for one unit. Each unit only can actually go
through one path, which is captured in the observational data.
However, at each intervention stage, the unit can choose one
of the two or multiple interventions, leading to multiple po-
tential paths, including one factual path and several counter-
factual ones. In the causal effect estimation task, we need to
estimate the potential outcomes along all potential paths.

In the circumstances, the selection bias will accumulate
and accumulate over multiple stages, making the estimation
of counterfactual outcomes more challenging. To the best of
our knowledge, existing treatment effect estimation methods
cannot effectively solve this type of problem. For this new
problem of sequential treatments, the causal effect estimation
task can be transformed into a graph learning task based on
a heterogeneous graph and directed acyclic graph. First, it
constructs a biased heterogeneous graph with self-supervised
learning, including many disconnected sub-graphs. Each sub-
graph represents one unit and all its potential paths. Second,
the learned heterogeneous graph is a typical directed acyclic
graph, an architecture that processes information according
to the flow defined by the partial order. Based on the practical
implications of this DAG, bidirectional processing is utilized.
A path may be processed to estimate the outcome at the end
of the path by the natural order, and another is used to recon-
struct the original feature by the reversed order.

4.1.2 Structured Treatments
In many practical situations, treatments are naturally struc-
tured, such as medical prescriptions (text), protein structures
(graph), and computed tomography scans (image). Tradi-
tional treatment effect estimation methodologies typically use
separate prediction heads for each treatment option so that
the influence of the treatment indicator variable might be lost
in the high-dimensional network representations. Extending
this idea directly to structured treatments would not only be
computationally expensive but would also not be able to make
use of treatment features or learn treatment representations
[Kaddour et al., 2021].

GraphITE [Harada and Kashima, 2021] learns representa-
tions of graph treatments for CATE estimation. They pro-
pose to utilize graph neural networks while mitigating obser-
vation biases using Hilbert-Schmidt Independence Criterion
regularization, which increases the independence of the rep-



resentations of the targets and treatments. Inspired by the
Robinson decomposition, which has enabled flexible CATE
estimation for binary treatments, [Kaddour et al., 2021] pro-
pose the Generalized Robinson Decomposition (GRD) from
which they extract a pseudo-outcome that targets the causal
effect. A generalization of the GRD to treatments that can be
vectorized as a continuous embedding. This GRD reveals a
learnable pseudo-outcome target that isolates the causal com-
ponent of the observed signal by eliminating confounding as-
sociations.

In addition, there is a growing methodological literature in-
vestigating how images should be integrated to estimate treat-
ment effect [Pawlowski et al., 2020; Castro et al., 2020] in the
observational data. An image-based treatment effect model is
proposed by using a deep probabilistic modeling framework
[Jerzak et al., 2022]. They develop a method that estimates
latent clusters of images by identifying images with similar
treatment effects distributions. The model also emphasizes
an image sensitivity factor that quantifies the importance of
image segments in contributing to the mean effect cluster pre-
diction, obtained via Monte Carlo using the approximate pos-
terior distribution over the clustering.

4.2 Covariate
In the treatment effect estimation task, the selection bias is
the greatest challenge, which is the phenomenon that the
distribution of the observed group is not representative of
the group we are interested in. Confounder variables affect
units’ treatment choices, which leads to selection bias. This
phenomenon exacerbates the difficulty of counterfactual out-
come estimation, as we need to estimate the control outcome
of units in the treated group based on the observed control
group, and to estimate the treated outcome of units in the
control group based on the observed treated group. The pro-
cedure for handling the selection bias is called covariate ad-
justment [Yao et al., 2021].

As more covariates are collected in observational data, we
face different types of covariates, such as confounders (ob-
served and hidden), adjustment, instrumental, and spurious
variables. However, more data do not mean better estimation
results. Therefore, in this section, we discuss this topic from
three aspects: (1) feature selection; (2) feature representation
disentanglement; (3) hidden confounders.

4.2.1 Feature Selection
A common approach for covariate adjustment is using the
propensity score, i.e., the probability of a unit being assigned
to a particular level of treatment, given the background co-
variates [Rosenbaum and Rubin, 1983]. In covariate adjust-
ment, although including all confounders is essential, this
does not mean that including more variables is always bet-
ter [Chu et al., 2020; Greenland, 2008; Schisterman et al.,
2009]. For example, conditioning on instrumental variables
that are associated with the treatment assignment but not with
the outcome except through treatment can increase both bias
and variance of estimated causal effects [Myers et al., 2011].
Conditioning on adjustment variables that are predictive of
outcomes but not associated with treatment assignment is
unnecessary to remove bias while reducing variance in esti-

Figure 4: The relationships among treatment, confounder, outcome,
instrumental, adjustment, and spurious variables.

mated causal effects [Sauer et al., 2013]. Therefore, the inclu-
sion of instrumental variable can inflate standard errors with-
out improving bias, while the inclusion of adjustment vari-
able can improve precision [Shortreed and Ertefaie, 2017;
Wilson and Reich, 2014; Lin et al., 2015; Zigler and Do-
minici, 2014].

[Kuang et al., 2017] propose a Data-Driven Variable De-
composition (D2VD) algorithm, which can automatically
separate confounders and adjustment variables with a data-
driven approach where a regularized integrated regression
model is presented to enable confounder separation and ATE
estimation simultaneously. [Chu et al., 2023] propose a deep
adaptive variable selection-based propensity score method
(DAVSPS) by using representation learning and adaptive
group LASSO. The key idea of DAFSPS is to combine the
data-driven learning capability of representation learning and
variable selection consistency of adaptive group LASSO to
improve the estimation of the propensity score by selecting
confounders and adjustment variables while removing instru-
mental and spurious variables. The framework of DAVSPS
contains two major steps: outcome prediction with group
LASSO and propensity score estimation with adaptive group
LASSO. Step One uses a deep neural network (DNN) with
group LASSO to predict the outcome and obtain the ini-
tial weight estimates for each covariate. Step Two uses a
DNN classification model to estimate propensity scores with
adaptive group LASSO, under which the weighted penalty
is based on initial weight estimates obtained from step one.
Therefore, DAVSPS can automatically select covariates pre-
dictive of the outcome (i.e., confounder and adjustment vari-
ables) while removing covariates independent of the outcome
(i.e., instrumental and spurious variables) in propensity score
estimation.

4.2.2 Feature Representation Disentanglement
For a simple feature representation disentanglement, i.e., con-
founders and non-confounders, [Wu et al., 2020] propose a
synergistic learning framework to identify confounders by
learning decomposed representations of both confounders
and non-confounders, and balance confounders with sample
re-weighting technique, and simultaneously. Then, a more
detailed disentangled representation learning method [Has-
sanpour and Greiner, 2020] decomposes covariates into three
latent factors, including instrumental Γ, confounding ∆, and
adjustment Υ factors. They assume that the random vari-
able X follows an unknown joint probability distribution



Pr(X|Γ,∆,Υ), treatment T follows Pr(T |Γ,∆), and out-
come Y follows Pr(Y |∆,Υ), where Γ, ∆, and Υ represent
the three underlying factors that generate an observational
dataset. Correspondingly, the selection bias is induced by
factors Γ and ∆, where ∆ represents the confounding fac-
tors between T and Y . [Zhang et al., 2021] propose a vari-
ational inference approach to simultaneously infer latent fac-
tors from the observed variables, disentangle the factors into
three disjoint sets corresponding to the instrumental, con-
founding, and adjustment factors, and use the disentangled
factors for treatment effect estimation. However, it remains
an open problem how to learn the underlying disentangled
factors precisely. Specifically, previous methods may fail to
obtain independent disentangled factors, which is necessary
for identifying treatment effects. [Cheng et al., 2022] propose
Disentangled Representations for Counterfactual Regression
via Mutual Information Minimization (MIM-DRCFR), which
uses a multi-task learning framework to share information
when learning the latent factors and incorporates MI mini-
mization learning criteria to ensure the independence of these
factors.

4.2.3 Hidden Confounders
Due to the fact that identifying all of the confounders is im-
possible in practice, the strong ignorability assumption is usu-
ally untenable. If a confounder is hidden or unmeasured, it is
impossible in the general case without further assumptions to
estimate the treatment effect on the outcome [Pearl, 2009b].
By leveraging big data, it becomes possible to find a proxy
for the hidden or unmeasured confounders by exploring the
relationship between the hidden confounders, their proxies,
the treatment, and the outcome. For example, Causal Ef-
fect Variational Autoencoder (CEVAE) [Louizos et al., 2017]
is based on Variational Autoencoders (VAE), which follows
the causal structure of inference with proxies. It can simulta-
neously estimate the unknown latent space summarizing the
confounders and the causal effect.

In addition, recent studies have shown that the auxiliary
network information among data can be utilized to mitigate
the confounding bias. The network information, which serves
as an efficient structured representation of non-regular data,
is ubiquitous in the real world. Advanced by the power-
ful representation capabilities of various graph neural net-
works, networked data has recently received increasing at-
tention [Kipf and Welling, 2016; Veličković et al., 2017;
Velickovic et al., 2019; Jiang et al., 2019]. Therefore, it
can also be used to help recognize the patterns of hidden
confounders. A network deconfounder [Guo et al., 2019] is
proposed to recognize hidden confounders by combining the
graph convolutional networks [Kipf and Welling, 2016] and
counterfactual regression [Shalit et al., 2017]. Unlike net-
worked data in traditional graph learning tasks, such as node
classification and link prediction, the networked data under
the causal inference problem has its particularity, i.e., imbal-
anced network structure. [Chu et al., 2021] propose a Graph
Infomax Adversarial Learning (GIAL) model for treatment
effect estimation, which makes full use of the network struc-
ture to capture more information by recognizing the imbal-
ance in network structure. However, the above works assume

that the observational data and the relations among them are
static, while in reality, both of them will continuously evolve
over time, i.e., time-evolving networked observational data.
[Ma et al., 2021] propose a novel causal inference frame-
work Dynamic Networked Observational Data Deconfounder
(DNDC), which learns dynamic representations of hidden
confounders over time by mapping the current observational
data and historical information into the same representation
space.

4.3 Outcome
The foremost challenge to treatment effect estimation with
observational data is to handle the imbalance in the co-
variates with respect to different treatment options, which
is caused by selection bias. Recent causal effect estima-
tion methods [Johansson et al., 2016; Shalit et al., 2017;
Li and Fu, 2017] have built a strong connection with do-
main adaptation by enforcing domain invariance with distri-
butional distances such as the Wasserstein distance and max-
imum mean discrepancy. Inspired by metric learning, some
methods [Yao et al., 2018] use hard samples to learn represen-
tations that preserve local similarity information and balance
the data distributions. In [Zhang et al., 2020], the authors
argue that distribution invariance is often too strict a require-
ment and, they propose to use counterfactual variance to mea-
sure the domain overlap. Motivated by information theory,
[Chu et al., 2022a] propose to learn the Infomax and Domain-
Independent Representations. It utilizes the mutual informa-
tion between the global feature representations and individual
feature representations, and the mutual information between
feature representations and treatment assignment predictions
in order to maximally capture the common predictive infor-
mation for both treatment and control groups.

For these domain adaptation methodologies based on the
potential outcome framework (POF), the model aims to
learn the domain-invariant representations i.e., transforma-
tions of features, such that the treatment and control groups
are approximately indistinguishable in the representation
space [Ben-David et al., 2007]. Despite the popularity of do-
main adaptation for POF, the sufficient support assumption
[Ben-David and Urner, 2012] for domain adaptation uncov-
ers intrinsic limitations of learning invariant representations
when it comes to the shift in support of domains [Liu et al.,
2021]. The positivity assumption is an essential assumption
in causal effect estimation, and it supports the strong suffi-
cient support assumption for domain adaptation [Zhao et al.,
2019; Johansson et al., 2019]. However, the positivity as-
sumption is by no means guaranteed to hold in practice due
to the following two reasons. First, high-dimensional data
often contain redundant or irrelevant information for predict-
ing the outcome but still helps to distinguish the treatment
and control groups. Second, variables distributed differently
across treatment groups are usually critical for prediction.

Besides, for the domain adaptation problem under POF set-
tings, seeking the optimal metric to measure the distance be-
tween the treatment and control groups remains unsettled.
The choice of distance metrics is highly dependent on the
characteristics of data distributions and the hyperparameters
of regularization terms for imbalance mitigation. Especially,



even with the same selection bias, there is no consensus
among different metrics in terms of balancing data distribu-
tions [Zhang et al., 2020].

Finally, we argue that regularizing representations to
be domain-invariant is too strict, in particular when do-
mains (e.g., treatment and control groups) are partially over-
lapped [Zhang et al., 2020]. Several studies show that the
empirical risk minimization only on factual data outperforms
domain-invariant representation learning algorithms. There-
fore, enforcing domain-invariant can easily remove predic-
tive information and lead to a loss in predictive power, re-
gardless of which type of domain divergence metrics is em-
ployed [Alaa and Schaar, 2018]. These observations motivate
us to relax the positivity assumption and develop a new and
unified paradigm for treatment effect estimation, such that we
could avoid the choice dilemma of domain divergence metrics
and also overcome the loss of predictive information. This is
a promising and urgent direction for the treatment effect esti-
mation task.

5 Conclusion
Causal inference is a developing field of academic research
and various industrial applications. Recently, the blooming
development of machine learning has brought new vitality
into the causal inference area, not only the excellent progress
on original problems but also the new research potentials and
directions. In this survey, we comprehensively review emerg-
ing advances, challenges, and opportunities for the treatment
effect estimation task from the three core components, i.e.,
treatment, covariates, and outcome.

References
[Alaa and Schaar, 2018] Ahmed Alaa and Mihaela Schaar.

Limits of estimating heterogeneous treatment effects:
Guidelines for practical algorithm design. In International
Conference on Machine Learning, pages 129–138, 2018.

[Athey and Imbens, 2015] Susan Athey and Guido W Im-
bens. Machine learning methods for estimating heteroge-
neous causal effects. stat, 1050(5):1–26, 2015.

[Ben-David and Urner, 2012] Shai Ben-David and Ruth
Urner. On the hardness of domain adaptation and the
utility of unlabeled target samples. In International Con-
ference on Algorithmic Learning Theory, pages 139–153.
Springer, 2012.

[Ben-David et al., 2007] Shai Ben-David, John Blitzer,
Koby Crammer, and Fernando Pereira. Analysis of
representations for domain adaptation. In Advances in
neural information processing systems, pages 137–144,
2007.

[Bica et al., 2020] Ioana Bica, James Jordon, and Mihaela
van der Schaar. Estimating the effects of continuous-
valued interventions using generative adversarial net-
works. Advances in Neural Information Processing Sys-
tems, 33:16434–16445, 2020.

[Castro et al., 2020] Daniel C Castro, Ian Walker, and Ben
Glocker. Causality matters in medical imaging. Nature
Communications, 11(1):3673, 2020.

[Chakraborty and Murphy, 2014] Bibhas Chakraborty and
Susan A Murphy. Dynamic treatment regimes. Annual
review of statistics and its application, 1:447–464, 2014.

[Cheng et al., 2022] Mingyuan Cheng, Xinru Liao, Quan
Liu, Bin Ma, Jian Xu, and Bo Zheng. Learning disen-
tangled representations for counterfactual regression via
mutual information minimization. In Proceedings of the
45th International ACM SIGIR Conference on Research
and Development in Information Retrieval, pages 1802–
1806, 2022.

[Chu and Li, 2023] Zhixuan Chu and Sheng Li. Continual
treatment effect estimation: Challenges and opportunities.
arXiv preprint arXiv:2301.01026, 2023.

[Chu et al., 2020] Zhixuan Chu, Stephen L Rathbun, and
Sheng Li. Matching in selective and balanced representa-
tion space for treatment effects estimation. In Proceedings
of the 29th ACM International Conference on Information
& Knowledge Management, pages 205–214, 2020.

[Chu et al., 2021] Zhixuan Chu, Stephen L Rathbun, and
Sheng Li. Graph infomax adversarial learning for treat-
ment effect estimation with networked observational data.
In Proceedings of the 27th ACM SIGKDD Conference on
Knowledge Discovery & Data Mining, pages 176–184,
2021.

[Chu et al., 2022a] Zhixuan Chu, Stephen L Rathbun, and
Sheng Li. Learning infomax and domain-independent
representations for causal effect inference with real-world
data. In Proceedings of the 2022 SIAM International Con-
ference on Data Mining (SDM), pages 433–441. SIAM,
2022.

[Chu et al., 2022b] Zhixuan Chu, Stephen L Rathbun, and
Sheng Li. Multi-task adversarial learning for treatment
effect estimation in basket trials. In Conference on Health,
Inference, and Learning, pages 79–91. PMLR, 2022.

[Chu et al., 2023] Zhixuan Chu, Mechelle Claridy, Jose
Cordero, Sheng Li, and Stephen L Rathbun. Estimating
propensity scores with deep adaptive variable selection. In
Proceedings of the 2023 SIAM International Conference
on Data Mining (SDM). SIAM, 2023.

[Cui et al., 2020] Peng Cui, Zheyan Shen, Sheng Li, Liuyi
Yao, Yaliang Li, Zhixuan Chu, and Jing Gao. Causal in-
ference meets machine learning. In Proceedings of the
26th ACM SIGKDD International Conference on Knowl-
edge Discovery & Data Mining, pages 3527–3528, 2020.

[Feder et al., 2022] Amir Feder, Katherine A Keith, Emaad
Manzoor, Reid Pryzant, Dhanya Sridhar, Zach Wood-
Doughty, Jacob Eisenstein, Justin Grimmer, Roi Reichart,
Margaret E Roberts, et al. Causal inference in natural lan-
guage processing: Estimation, prediction, interpretation
and beyond. Transactions of the Association for Compu-
tational Linguistics, 10:1138–1158, 2022.

[Greenland, 2008] Sander Greenland. Invited commentary:
variable selection versus shrinkage in the control of mul-
tiple confounders. American journal of epidemiology,
167(5):523–529, 2008.



[Guo et al., 2018] Ruocheng Guo, Lu Cheng, Jundong Li,
P Richard Hahn, and Huan Liu. A survey of learning
causality with data: Problems and methods. arXiv preprint
arXiv:1809.09337, 2018.

[Guo et al., 2019] Ruocheng Guo, Jundong Li, and Huan
Liu. Learning individual treatment effects from networked
observational data. arXiv preprint arXiv:1906.03485,
2019.

[Harada and Kashima, 2021] Shonosuke Harada and Hisashi
Kashima. Graphite: Estimating individual effects of
graph-structured treatments. In Proceedings of the 30th
ACM International Conference on Information & Knowl-
edge Management, pages 659–668, 2021.

[Hassanpour and Greiner, 2020] Negar Hassanpour and
Russell Greiner. Learning disentangled representations
for counterfactual regression. In International Conference
on Learning Representations, 2020.

[Hu et al., 2020] Liangyuan Hu, Chenyang Gu, Michael
Lopez, Jiayi Ji, and Juan Wisnivesky. Estimation of causal
effects of multiple treatments in observational studies with
a binary outcome. Statistical methods in medical research,
29(11):3218–3234, 2020.

[Imbens and Rubin, 2015] Guido W Imbens and Donald B
Rubin. Causal inference in statistics, social, and biomedi-
cal sciences. Cambridge University Press, 2015.

[Jerzak et al., 2022] Connor T Jerzak, Fredrik Johansson,
and Adel Daoud. Image-based treatment effect hetero-
geneity. arXiv preprint arXiv:2206.06417, 2022.

[Jiang et al., 2019] Xiaodong Jiang, Pengsheng Ji, and
Sheng Li. Censnet: Convolution with edge-node switch-
ing in graph neural networks. In International Joint Con-
ference on Artificial Intelligence, pages 2656–2662, 2019.

[Johansson et al., 2016] Fredrik Johansson, Uri Shalit, and
David Sontag. Learning representations for counterfactual
inference. In International conference on machine learn-
ing, pages 3020–3029, 2016.

[Johansson et al., 2019] Fredrik D Johansson, David Son-
tag, and Rajesh Ranganath. Support and invertibility in
domain-invariant representations. In The 22nd Interna-
tional Conference on Artificial Intelligence and Statistics,
pages 527–536. PMLR, 2019.

[Kaddour et al., 2021] Jean Kaddour, Yuchen Zhu, Qi Liu,
Matt J Kusner, and Ricardo Silva. Causal effect inference
for structured treatments. Advances in Neural Information
Processing Systems, 34:24841–24854, 2021.

[Kipf and Welling, 2016] Thomas N Kipf and Max Welling.
Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907, 2016.

[Kuang et al., 2017] Kun Kuang, Peng Cui, Bo Li, Meng
Jiang, Shiqiang Yang, and Fei Wang. Treatment effect es-
timation with data-driven variable decomposition. In Pro-
ceedings of the Thirty-First AAAI Conference on Artificial
Intelligence, 2017.

[Li and Fu, 2017] Sheng Li and Yun Fu. Matching on bal-
anced nonlinear representations for treatment effects esti-
mation. In NIPS, 2017.

[Lin et al., 2015] Wei Lin, Rui Feng, and Hongzhe Li. Reg-
ularization methods for high-dimensional instrumental
variables regression with an application to genetical ge-
nomics. Journal of the American Statistical Association,
110(509):270–288, 2015.

[Liu et al., 2021] Hong Liu, Jianmin Wang, and Mingsheng
Long. Cycle self-training for domain adaptation. arXiv
preprint arXiv:2103.03571, 2021.

[Liu et al., 2022] Qiao Liu, Zhongren Chen, and Wing Hung
Wong. Causalegm: a general causal inference frame-
work by encoding generative modeling. arXiv preprint
arXiv:2212.05925, 2022.

[Lopez and Gutman, 2017] Michael J Lopez and Roee Gut-
man. Estimation of causal effects with multiple treatments:
a review and new ideas. Statistical Science, pages 432–
454, 2017.

[Louizos et al., 2017] Christos Louizos, Uri Shalit, Joris
Mooij, David Sontag, Richard Zemel, and Max Welling.
Causal effect inference with deep latent-variable models.
arXiv preprint arXiv:1705.08821, 2017.

[Ma and Li, 2022] Jing Ma and Jundong Li. Learning
causality with graphs. AI Magazine, 43(4):365–375, 2022.

[Ma et al., 2021] Jing Ma, Ruocheng Guo, Chen Chen,
Aidong Zhang, and Jundong Li. Deconfounding with net-
worked observational data in a dynamic environment. In
Proceedings of the 14th ACM International Conference on
Web Search and Data Mining, pages 166–174, 2021.

[McCaffrey et al., 2013] Daniel F McCaffrey, Beth Ann
Griffin, Daniel Almirall, Mary Ellen Slaughter, Rajeev
Ramchand, and Lane F Burgette. A tutorial on propensity
score estimation for multiple treatments using generalized
boosted models. Statistics in medicine, 32(19):3388–3414,
2013.

[Myers et al., 2011] Jessica A Myers, Jeremy A Rassen,
Joshua J Gagne, Krista F Huybrechts, Sebastian
Schneeweiss, Kenneth J Rothman, Marshall M Joffe, and
Robert J Glynn. Effects of adjusting for instrumental vari-
ables on bias and precision of effect estimates. American
journal of epidemiology, 174(11):1213–1222, 2011.

[Nie et al., 2021] Lizhen Nie, Mao Ye, Qiang Liu, and Dan
Nicolae. Vcnet and functional targeted regularization for
learning causal effects of continuous treatments. arXiv
preprint arXiv:2103.07861, 2021.

[Pawlowski et al., 2020] Nick Pawlowski, Daniel Coelho de
Castro, and Ben Glocker. Deep structural causal models
for tractable counterfactual inference. Advances in Neural
Information Processing Systems, 33:857–869, 2020.

[Pearl, 2000] Judea Pearl. Causality: models, reasoning and
inference, volume 29. Springer, 2000.

[Pearl, 2009a] Judea Pearl. Causal inference in statistics: An
overview. Statistics surveys, 3:96–146, 2009.



[Pearl, 2009b] Judea Pearl. Causality. Cambridge university
press, 2009.

[Rosenbaum and Rubin, 1983] Paul R Rosenbaum and Don-
ald B Rubin. The central role of the propensity score
in observational studies for causal effects. Biometrika,
70(1):41–55, 1983.

[Rubin, 1974] Donald B Rubin. Estimating causal effects
of treatments in randomized and nonrandomized studies.
Journal of educational Psychology, 66(5):688, 1974.

[Saini et al., 2019] Shiv Kumar Saini, Sunny Dhamnani,
Akil Arif Ibrahim, and Prithviraj Chavan. Multiple treat-
ment effect estimation using deep generative model with
task embedding. In The World Wide Web Conference,
pages 1601–1611, 2019.

[Sauer et al., 2013] Brian C Sauer, M Alan Brookhart, Ja-
son Roy, and Tyler VanderWeele. A review of covari-
ate selection for non-experimental comparative effective-
ness research. Pharmacoepidemiology and drug safety,
22(11):1139–1145, 2013.

[Schisterman et al., 2009] Enrique F Schisterman,
Stephen R Cole, and Robert W Platt. Overadjust-
ment bias and unnecessary adjustment in epidemiologic
studies. Epidemiology (Cambridge, Mass.), 20(4):488,
2009.

[Schwab et al., 2018] Patrick Schwab, Lorenz Linhardt, and
Walter Karlen. Perfect match: A simple method for learn-
ing representations for counterfactual inference with neu-
ral networks. arXiv preprint arXiv:1810.00656, 2018.

[Schwab et al., 2020] Patrick Schwab, Lorenz Linhardt, Ste-
fan Bauer, Joachim M Buhmann, and Walter Karlen.
Learning counterfactual representations for estimating in-
dividual dose-response curves. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 34, pages
5612–5619, 2020.

[Shalit et al., 2017] Uri Shalit, Fredrik D Johansson, and
David Sontag. Estimating individual treatment effect: gen-
eralization bounds and algorithms. In International Con-
ference on Machine Learning, pages 3076–3085. PMLR,
2017.

[Shi et al., 2019] Claudia Shi, David Blei, and Victor Veitch.
Adapting neural networks for the estimation of treatment
effects. Advances in neural information processing sys-
tems, 32, 2019.

[Shortreed and Ertefaie, 2017] Susan M Shortreed and
Ashkan Ertefaie. Outcome-adaptive lasso: Variable selec-
tion for causal inference. Biometrics, 73(4):1111–1122,
2017.

[Splawa-Neyman et al., 1990] Jerzy Splawa-Neyman,
Dorota M Dabrowska, and TP Speed. On the application
of probability theory to agricultural experiments. essay on
principles. section 9. Statistical Science, pages 465–472,
1990.

[Stuart, 2010] Elizabeth A Stuart. Matching methods for
causal inference: A review and a look forward. Statistical

science: a review journal of the Institute of Mathematical
Statistics, 25(1):1, 2010.
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R Devon Hjelm. Deep graph infomax. In ICLR (Poster),
2019.

[Wilson and Reich, 2014] Ander Wilson and Brian J Reich.
Confounder selection via penalized credible regions. Bio-
metrics, 70(4):852–861, 2014.

[Wu et al., 2020] Anpeng Wu, Kun Kuang, Junkun Yuan,
Bo Li, Runze Wu, Qiang Zhu, Yueting Zhuang, and Fei
Wu. Learning decomposed representation for counterfac-
tual inference. arXiv preprint arXiv:2006.07040, 2020.

[Yao et al., 2018] Liuyi Yao, Sheng Li, Yaliang Li, Mengdi
Huai, Jing Gao, and Aidong Zhang. Representation learn-
ing for treatment effect estimation from observational data.
Advances in Neural Information Processing Systems, 31,
2018.

[Yao et al., 2021] Liuyi Yao, Zhixuan Chu, Sheng Li,
Yaliang Li, Jing Gao, and Aidong Zhang. A survey on
causal inference. ACM Transactions on Knowledge Dis-
covery from Data (TKDD), 15(5):1–46, 2021.

[Yoon et al., 2018] Jinsung Yoon, James Jordon, and Mi-
haela Van Der Schaar. Ganite: Estimation of individu-
alized treatment effects using generative adversarial nets.
In International Conference on Learning Representations,
2018.

[Zeng and Wang, 2022] Jingying Zeng and Run Wang. A
survey of causal inference frameworks. arXiv preprint
arXiv:2209.00869, 2022.

[Zhang et al., 2020] Yao Zhang, Alexis Bellot, and Mihaela
van der Schaar. Learning overlapping representations for
the estimation of individualized treatment effects. arXiv
preprint arXiv:2001.04754, 2020.

[Zhang et al., 2021] Weijia Zhang, Lin Liu, and Jiuyong Li.
Treatment effect estimation with disentangled latent fac-
tors. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, pages 10923–10930, 2021.

[Zhao et al., 2019] Han Zhao, Remi Tachet Des Combes,
Kun Zhang, and Geoffrey Gordon. On learning invari-
ant representations for domain adaptation. In Interna-
tional Conference on Machine Learning, pages 7523–
7532. PMLR, 2019.

[Zigler and Dominici, 2014] Corwin Matthew Zigler and
Francesca Dominici. Uncertainty in propensity score es-
timation: Bayesian methods for variable selection and
model-averaged causal effects. Journal of the American
Statistical Association, 109(505):95–107, 2014.


	1 Introduction
	2 Previous Work
	3 Problem Definition
	4 Research Challenges and Opportunities
	4.1 Treatment
	4.1.1 Binary, Multiple, Continuous, and Sequential Treatments
	4.1.2 Structured Treatments

	4.2 Covariate
	4.2.1 Feature Selection
	4.2.2 Feature Representation Disentanglement
	4.2.3 Hidden Confounders

	4.3 Outcome

	5 Conclusion

