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Causality

❑ Causality is also referred to as “causation”, or “cause and effect”
❑ Causality has been extensively discussed in many fields, such as statistics, 

philosophy, psychology, economics, education, and health care.

4Figure: https://www.pinterest.com/pin/195906652514487365/

https://www.pinterest.com/pin/195906652514487365/


Correlation and Causation

❏ Correlation does not imply causation
❏ For two correlated events A and B, the possible relations might be: (1) A 

causes B, (2) B causes A, (3) A and B are consequences of a common cause, 
but do not cause each other, etc.

 

❏ Example of (3): As ice cream sales increase, the rate of drowning deaths 
increases sharply. The two events are correlated. However, increasing ice 
cream consumption and drowning deaths may not have causal relationships. 
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Causal Inference

❏ Causal inference is the process of drawing a conclusion about a causal 
connection based on the conditions of the occurrence of an effect

❏ Two major tasks in causal inference
○ Treatment Effect Estimation (This Tutorial): estimate the causal effects 

of an intervention on subjects, e.g., the effects of medication
○ Causal Discovery: infer causal structure from data, i.e., finding causal 

relations among variables 

6



Experimental Study vs. Observational Study

❏ Experimental Study
○ Randomized Controlled Trial (RCT)
○ Assignment of control/treated is random
○ Gold-standard for studying causal relationships
○ Expensive and time-consuming, e.g., A/B testing

❏ Observational Study
○ Assignment is NOT random
○ Approaches: structural causal models, potential outcome framework
○ Simple, efficient and interpretable, e.g., nearest neighbor matching
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About This Tutorial

❏ Causal inference is an active research area with many research topics, this 
tutorial mainly focuses on the potential outcome framework in observational 
study

❏ Machine learning could assist causal inference at different stages. In this 
tutorial, we focus on how to design representation learning methods and 
graph neural networks for causal inference. Moreover, we will discuss 
causality-aided machine learning.
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About This Tutorial

9

❏ Schedule
○ 8:30 AM - 9:15 AM: Background on Causal Inference (S. Li)
○ 9:15 AM - 10:00 AM: Representation Learning based Methods (Z. Chu)
○ 10:00 AM - 10:30 AM: Coffee Break
○ 10:30 AM - 11:10 AM: Graph Neural Networks based Methods (J. Li)
○ 11:10 AM - 11:40 AM: Causality-aided Machine Learning (J. Ma)
○ 11:40 AM - 12:00 AM: Applications, Future Directions, and Closing Remarks (S. Li)

❏ Website: https://aaai23causalinference.github.io/ 

https://aaai23causalinference.github.io/


Causal Inference Paradigms

10

❏ Graphical Causal Models
○ Causal graphs are probabilistic graphical models to encode 

assumptions about data-generating process [Pearl, 2009]
○ Related approach: structural equation modeling (SEM)

❏ Potential Outcome Framework
○ An approach to the statistical analysis of cause and effect 

based on the potential outcomes [Rubin, 2005]
○ Also known as Rubin causal model (RCM), or Neyman–Rubin 

causal model

An Example of 
Causal Graph

[Pearl, 2009] Judea Pearl. Causality. Cambridge University Press, 2009.
[Rubin, 2005] Donald Rubin. Causal inference using potential outcomes. Journal of the American Statistical Association, 2005.



Potential Outcome Framework (1)
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❏ Unit: A unit is the atomic research object in the causal study
❏ Treatment: An action that applies to a unit

In the binary treatment case (i.e., W = 0 or 1), treated group contains units 
received treatment W = 1, while control group contains units received 
treatment W = 0

❏ Outcome: response of units after treatment/control, denoted as Y 
❏ Treatment Effect: The change of outcome when applying the different 

treatments on the units 



An Illustrative Example

12

❏ Task: Evaluate the treatment effects of several different medications for one 
disease, by exploiting the observational data, such as the electronic health 
records (EHR)

❏ Observational data may include: (1) demographic information of patients, 
(2) specific medication with the specific dosage taken by patients, and (3) the 
outcome of medical tests

❏ Units: patients
❏ Treatments: different medications
❏ Outcome: recovery, blood test results, or others



Potential Outcome Framework (2)

13

❏ Potential Outcome: For each unit-treatment pair, the outcome of that 
treatment when applied on that unit is the potential outcome. Y(W=w)

❏ Observed Outcome: Outcome of treatment that is actually applied. In binary 
case,

❏ Counterfactual Outcome: Potential outcome of the treatments that the unit 
had not taken. In binary case,

❏ A unit can only take one treatment. Thus, counterfactual outcomes are not 
observed, leading to the well-known “missing data” problem



Potential Outcome Framework (3)

14

❏ Treatment Effects can be defined at the population, treated group, subgroup 
and individual levels

❏ Population Level: Average Treatment Effect (ATE)

❏ Treated group: Average Treatment Effect on the Treated Group (ATT)

❏ Subgroup: Conditional Average Treatment Effect (CATE)

❏ Individual: Individual Treatment Effect (ITE)



Assumptions
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❏ Assumption 1: Stable Unit Treatment Value Assumption (SUTVA)
The potential outcomes for any unit do not vary with the treatment assigned 
to other units, and, for each unit, there are no different forms or versions of 
each treatment level, which lead to different potential outcomes.

❏ This assumption emphasizes that: 
○ Independence of each unit, i.e., there are no interactions between 

units. In our example, one patient's outcome will not affect other patients' 
outcomes 

○ Single version for each treatment. For instance, one medicine with 
different dosages are different treatments under the SUTVA assumption



Assumptions
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❏ Assumption 2: Ignorability
Given the background variable, X, treatment assignment W is independent of 
the potential outcomes, i.e., 

❏ Following our example, this assumption implies that: 
○ If two patients have the same background variable X, their potential 

outcome should be the same whatever the treatment assignment is.
○ Analogously, if two patients have the same background variable value, 

their treatment assignment mechanism should be same whatever the 
value of potential outcomes they have



Assumptions
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❏ Assumption 3: Positivity
For any set of values of X, treatment assignment is not deterministic:

❏ If treatment assignment for some values of X is deterministic, the outcomes 
of at least one treatment could never be observed. It would be unable and 
meaningless to estimate causal effects

❏ It implies “common support” or “overlap” of treated and control groups
❏ The ignorability and the positivity assumptions together are also called 

Strong Ignorability or Strongly Ignorable Treatment Assignment 



A Naive Solution
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❏ The core problem in causal inference is: how to estimate the average 
potential treated/control outcomes over a specific group?

❏ One naive solution is to calculate the difference between the average treated 
and control outcomes, i.e.,

 
❏ However, this solution is not reasonable due to the existence of confounders



Confounders
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❏ Confounders: Variables that affect both treatment assignment and outcome
❏ In the medical example, age is a confounder

❏ Age would affect the recovery rate
❏ Age would also affect the treatment choice   

Simpson's paradox 
due to confounder



Selection Bias
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❏ Selection Bias: The distribution of the observed group is not representative to 
the group we are interested in

❏ Confounder variables affect units' treatment choices, leading to selection bias
❏ Selection bias makes counterfactual outcome estimation more difficult   



Classical Causal Inference Methods

21

❏ Causal inference has been an active research area in statistics in the past 
several decades

❏ Categorization of Classical Methods
○ Re-weighting methods
○ Stratification methods
○ Matching methods
○ Tree-based methods



Re-weighting Methods

22

❏ Challenge of Selection Bias: due to different distributions of treated and 
control groups

❏ Sample re-weighting is a simple way to overcome the selection bias problem
❏ Key Idea: By assigning appropriate weight to each sample in the observation 

dataset, a pseudo-population is created on which the distributions of the 
treated group and control group are similar



Sample Re-weighting Methods

23

❏ Intuition example: Age (Yong/older) as the confounder
○ Young people: 75% chance of receiving treatment
○ Older people: only a 25% chance of receiving treatment 

http://www.rebeccabarter.com/blog/2017-07-05-ip-weighting/

http://www.rebeccabarter.com/blog/2017-07-05-ip-weighting/


Stratification Methods

24

❏ Stratification adjusts the selection bias by splitting the entire group into 
subgroups, where within each subgroup, the treated group and the control 
group are similar under some measurements

❏ Stratification is also named as subclassification or blocking
❏ ATE for stratification is estimated as

j-th block



Matching Methods

25

❏ Matching methods estimate the counterfactuals and meanwhile reduce the 
estimation bias brought by the confounders

❏ Potential outcomes of the i-th unit estimated by matching are:

where J(i) is the matched neighbors of unit i 

in the opposite treatment group  



Propensity Score Matching (PSM)
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❏ Propensity scores denote conditional probability of assignment to a particular 
treatment given a vector of observed covariates.

❏ Based on propensity scores, the distance between two units is

❏ Alternatively, linear propensity score based distance metric

P. Rosenbaum, and D. Rubin. "The central role of the propensity score in observational studies for causal effects." Biometrika 70.1 (1983): 41-55.



Tree-based Methods

27

❏ Classification And Regression Trees (CART) 
❏ Recursively partition the data space 
❏ Fit a simple prediction model for each partition
❏ Represent every partitioning as a decision tree

❏ Leaf specific effect:

P. Rosenbaum, and D. Rubin. "The central role of the propensity score in observational studies for causal effects." Biometrika 70.1 (1983): 41-55.

A specific leaf node



Causal Forest

28

❏ Single tree is noisy -> using forest

❏ Forests = nearest neighbor methods + adaptive neighborhood metric

❏ k-nearest neighbors: seek the k closest points to x according to some 

prespecified distance measure

❏ Tree-based methods: closeness is defined with respect to a decision tree, 

and the closest points to x are those that fall in the same leaf 

S. Wager, and S. Athey. "Estimation and inference of heterogeneous treatment effects using random forests." Journal of the American Statistical 
Association 113.523 (2018): 1228-1242.



Why ML is Helpful for Causal Inference?

29

❏ Machine Learning

○ Various learning tasks, e.g., regression, classification, clustering

○ Various settings: multi-view, multi-task, transfer learning, etc.

○ Feature learning by shallow and deep models

❏ Connections between Causal Inference and Machine Learning

○ Matching in representation space

○ Covariate shift and group balancing

○ Counterfactual inference could be modeled as a regression problem
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Representation Learning based Methods

❑ Traditional treatment effect estimation methods may not well handle large-scale and 
high-dimensional heterogeneous data

❑ Advanced machine learning approaches -> extraordinary performance 

❑ New topics and new research questions from the core components of the treatment effect 
estimation task:

■ Treatment
■ Covariates 

■ Outcome 

31



Representation Learning

❑ Deep learning architecture is composed of an input layer, hidden layers, and an output layer

■ The output of each intermediate layer can be viewed as a representation of the original 

input data

■ Ability to deliver high-quality features and enhanced learning performance

■ Examples: Feed forward NN, CNN, Auto Encoder, VAE, GAN, etc.

32



Treatment 

❑ Treatment: How could we deal with different types of treatments?

■ (1) Binary  

■ (2) Multiple

■ (3) Continuous scalar treatments

■ (4) Interrelated sequential treatments

■ (5) Structured treatments (e.g., graphs, images, texts)

33



Binary, Multiple, Continuous, Sequential Treatments

❑ A unified terminology 

■ Suppose that the observational data contain n units

■ Each unit goes through one potential path, including 

several treatment stages

■ In each potential path, the unit i can sequentially 

choose one of the two or multiple treatments T at 

each stage S, and finally, the corresponding outcome 

Y could be observed at the end of the path

■ Let                                                                                

denote the treatment assignment for unit i at stage s

34



Binary, Multiple, Continuous, Sequential Treatments

■ Exist several potential paths

■ However, only one of the potential outcomes 

is observed at the end of the path according 

to the actual treatment assignments

■ This observed outcome is called the factual 

outcome, and the remaining unobserved 

potential outcomes are called counterfactual 

outcomes

35



Binary Treatments

❑ Motivation

■ Selection Bias 

■ Counterfactual inference <-> Domain adaptation

36

Observed control units -> estimate the control outcome of units in the treated group 
Observed treated units -> estimate the treated outcome of units in the control group 



Binary Treatments

❏ Balancing the two groups in the representation space

37



Binary Treatments

❑ Counterfactual Regression

❑ Objective Function

38U. Shalit, F. Johansson, and D. Sontag. "Estimating individual treatment effect: generalization bounds and algorithms." Proceedings of the 34th International Conference on Machine 
Learning (ICML), 2017.

Factual loss

Discrepancy

For treatment group

For control group

Between treatment 
and control groups

For treatment and 
control groups



Multiple Treatments

❑ Binary treatment models can be extended to multiple treatment models
■ Augment every sample with its closest matches by propensity score 
■ Use pairwise discrepancy distance to get balanced representations
■ Map to the common wasserstein barycenter 

39Schwab, P., Linhardt, L. and Karlen, W., 2018. Perfect match: A simple method for learning representations for counterfactual inference with neural networks. arXiv preprint 
arXiv:1810.00656.



Multiple Treatments

❑ Multi-task adversarial learning method 

■ Outcome generator

■ True or false discriminator (TF discriminator)

■ These two models are trained together in a zero-sum game 

40Chu, Z., Rathbun, S.L. and Li, S., 2022, April. Multi-task adversarial learning for treatment effect estimation in basket trials. In Conference on Health, Inference, and Learning (pp. 79-91). 
PMLR.



Continuous Treatments 

❑ Each head layer is assigned a dosage stratum that subdivides the range of potential 

dosages into partitions with equal width

41Schwab, P., Linhardt, L., Bauer, S., Buhmann, J.M. and Karlen, W., 2020, April. Learning counterfactual representations for estimating individual dose-response curves. In Proceedings of 
the AAAI Conference on Artificial Intelligence (Vol. 34, No. 04, pp. 5612-5619).

K sub-networks * E sub-networks for each treatment = K*E sub-networks

K=3

E=3



Continuous Treatments 

❑ Continuity of dose-response curve

❑ Varying coefficient neural network (VCNet)

❑ Neural network with parameter θ(t) instead of a fixed θ

42
Nie, L., Ye, M., Liu, Q. and Nicolae, D., 2021. Vcnet and functional targeted regularization for learning causal effects of continuous treatments. ICLR 2021.



Sequential Treatments 

❑ There exists the sequential selection bias

❑ Selection bias will accumulate and accumulate over multiple stages

❑ The estimation of counterfactual outcomes is more challenging
43

``online + in person'' mode of education delivery



Sequential Treatments 

❑ To transform the Causal Effect Estimation Framework to  the Heterogeneous Graph
■ Construct a heterogeneous graph with a large number of sub-graphs
■ Each sub-graph represents one unit and all the potential paths

44



Sequential Treatments 

❑ To preserve all information in observational data and selection bias
■ Potential Path Propagation and Completion ←Self-supervised Learning 

○ Node position classification and Sub-graph type classification (which path is factual path)
❑ To infer the Potential Outcomes at the end of paths

■ Bidirectional processing based on Directed Acyclic Graph Learning
■ Inference the outcome and reconstruct the feature vectors

45



Sequential Treatments

❑ Real industrial application data

46

(a)
(b)

(c)

(d)

More and more serious selection bias



Structured Treatments

❑ Treatments are naturally structured
■ Medical prescriptions (text)
■ Protein structures (graph)
■ Computed tomography scans (image)

❑ Extending this idea directly to structured treatments
■ Computationally expensive 
■ Not be able to make use of treatment features or learn treatment representations

❑ Robinson decomposition a reformulation of the CATE for binary treatments
■ Used by the R-learner to construct a plug-in estimator
■ Partialling out the confounding of X on T

■ Generalized Robinson decomposition (GRD)
■ Treatments can be vectorized as a continuous embedding
■ Isolates the causal component of the observed signal by partialling out confounding associations

47Kaddour, J., Zhu, Y., Liu, Q., Kusner, M.J. and Silva, R., 2021. Causal effect inference for structured treatments. Advances in Neural Information Processing Systems, 34, pp.24841-24854.



Covariate

❑ Covariate: How could we handle the different types of covariates

■ Confounders 

■ Adjustment variables

■ Instrumental variables

■ Spurious variables 

❑ Potential solutions:

■ Feature selection

■ Feature representation disentanglement

48



Covariate

❑ Observed variable:

■ Pre-treatment variable

■ Treatment variable

■ Outcome variable

49



Example

Wu, A., Kuang, K., Yuan, J., Li, B., Wu, R., Zhu, Q., Zhuang, Y. and Wu, F., 2020. Learning decomposed representation for counterfactual inference. arXiv preprint 
arXiv:2006.07040.

50



Deep Adaptive Variable Selection Propensity Score

❑ Although including all the confounders is important, this does not mean that including more variables is 
better

❑ Conditioning on an instrumental variable
■ Treatment assignment
■ Outcome
■ Increase both bias and variance

❑ Conditioning on an adjustment variable
■ Outcomes
■ Treatment assignment
■ Unnecessary to remove bias, but can reduce variance

❑ Conditioning on spurious (irrelevant) variables
■ Treatment assignment
■ Outcomes
■ May introduce more bias into model

❑ To improve the estimation of propensity score by selecting out confounders and adjustment variables, while 
removing instrumental and spurious variables

51



Feature Selection

❑ Combine the representation learning and variable selection to estimate the propensity score

❑ Automatically select confounders and adjustment variables and remove instrumental and 

spurious variables

■ Outcome prediction with group LASSO 

■ Propensity score estimation with adaptive group LASSO 

52
Zhixuan Chu, Mechelle Claridy, Jose Cordero, Sheng Li, and Stephen L Rathbun. Estimating propensity scores with deep adaptive variable selection. In Proceedings of the 2023 SIAM 
International Conference on Data Mining (SDM), 2023.



Outcome prediction with group LASSO 

❑ Impose a group LASSO penalty -> get the initial weight estimates for each covariate

■ Select covariates predictive of the outcome (i.e., confounder and adjustment variables)

■ Remove covariates independent of the outcome (i.e., instrumental and spurious variables)

53



Propensity score with adaptive group LASSO 

❑ Adopt a deep neural network with adaptive group LASSO to estimate the propensity score
■ A penalty function with different regularization strengths 
■ The weighted penalty is based on initial weight estimates 

❑ The weights for instrumental and spurious variables are inflated to infinity
❑ While the weights for confounders and adjustment variables are bounded

54



Feature Selection

55

 Want                 Remove                        Want                Remove 

Confounder 
Adjustment

Confounder 
Adjustment



Feature Representation Disentanglement

❑ Decompose covariates into three latent factors

■ Instrumental factors 𝚪
■ Confounding factors 𝚫
■ Adjustment factors 𝜰 

❑ Random variable X follows an unknown joint probability distribution Pr( X | 𝚪, 𝚫, 𝜰 )

❑ Treatment T follows Pr( T | 𝚪, 𝚫)

❑ Outcome Y  follows Pr ( Y | 𝚫, 𝜰 ) 

❑ Selection bias is induced by factors 𝚪 and 𝚫

56Hassanpour, N. and Greiner, R., 2020. Learning disentangled representations for counterfactual regression. In International Conference on Learning Representations.



Objective Function

❑  

❑  

❑  

❑

57Hassanpour, N. and Greiner, R. Learning disentangled representations for counterfactual regression. In International Conference on Learning Representations (ICLR), 2020.



Disentangled Factors 

❑ New challenges:
■ An open problem how to learn the underlying disentangled factors precisely
■ Previous methods may fail to obtain independent disentangled factors

❑ Potential solutions:
■ Incorporate MI minimization learning criteria to ensure the independence of these 

factors

58



Outcome

❑ Outcome: When estimating the factual and counterfactual outcomes, how 

could we overcome the selection bias among different treatment groups?

■ Distribution invariance

■ Domain adaptation

■ Local similarity

■ Domain overlap

■ Mutual information 

■ And so on

❑ Two major concerns !
59



Outcome (1)

❑ Optimal metric to measure the distance between the treatment and control groups 
remains unsettled
■ Use wasserstein or MMD to reduce distributional distance
■ Hard samples to learn representations that preserve local similarity 

information 
■ Use counterfactual variance to measure the domain overlap
■ Utilize the mutual information between feature representations and treatment 

assignment

❑ The choice of distance metrics is highly dependent on 
■ Characteristics of data distributions
■ Hyperparameters of regularization terms for imbalance mitigation

60



Outcome (1)

61
Zhang, Y., Bellot, A. and Schaar, M., 2020, June. Learning overlapping representations for the estimation of individualized treatment effects. In International Conference on Artificial 
Intelligence and Statistics (pp. 1005-1014). PMLR.

Overlap: “green” has greater 
counterfactual variance than “red”

Discrepancy: “red” has greater 
wasserstein and MMD than “green”

No consensus among different 
metrics in terms of balancing data



Outcome (2)

❑ Regularizing representations to be domain-invariant is too strict
■ when domains (e.g., treatment and control groups) are partially overlapped 

❑ The empirical risk minimization only on factual data outperforms domain-invariant representation 
learning algorithms

❑ Therefore, enforcing domain-invariant 
■ Remove predictive information
■ Lead to a loss in predictive power
■ Regardless of which type of domain divergence metrics is employed 

❑ This is a promising and urgent direction for the treatment effect estimation task
■ Avoid the choice dilemma of domain divergence metrics 
■ Overcome the loss of predictive information

62



Another Issue about Potential Outcome Estimation

❑ Source-specific and stationary observational data
■ Assume that all observational data are already available and from the only one 

source
❑ This assumption is unsubstantial in practice due to two reasons:

■ Incrementally available from non-stationary data distributions
■ The realistic consideration of accessibility:  too large to store, proprietary, 

sensitivity
❑ Continual causal inference framework

■ Extensibility
■ Adaptability 
■ Accessibility

63

Continual learning on 
data 1,2,3,4, and 5



Continual Causal Inference with Incremental 
Observational Data

❑ Existing strategies to handle  the new challenges :
■ Directly apply the previously trained model  to new observational data (CFR-A);
■ Utilize newly available data to fine-tune the previously learned model (CFR-B);
■ Store all previous data and combine with new data to re-train the model from 

scratch (CFR-C); 

64

Face a memory constraint or a 
barrier to accessing previous data



Continual Causal Inference with Incremental 
Observational Data

65

Learning selective representation

Herding sampling 
algorithm

Feature Representation Distillation

Feature Representation Transformation Balancing Global Feature Representation Space

Chu, Z.; Li, R.; Rathbun, S. L.; and Li, S. 2023. Continual Causal Inference with Incremental Observational Data. In The 39th IEEE International Conference on Data Engineering.
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Graph Data

❑ Graphs have been extensively used for modeling many real-world 
systems with connected units

67

Cooperation Network
 

Social Network

 

Knowledge Graph
 



Causal Inference on Graphs

68

❑ Causal inference studies the causal relations rather than statistical 
dependencies between variables

❑ Causal effect estimation: assessing the causal effects of a treatment (e.g., 
wearing a mask) on an outcome (e.g., COVID-19 infection)

❑ Causal effect estimation on graphs

T   Y   0 (control) or 1 (treated) Only one of them 
can be observed!

or

Potential outcomes

  

Question: In a contact network, how does the face 
mask practice influence COVID-19 infection risk?



Applications of Causal Inference on Graphs

❑ Causal inference has a wide range of applications in graph data

69

How does an ad campaign 
motivate users’ purchase?

How does a substructure 
influence the molecular property?

Which factors most 
impact the applicant’s  
credit application result?

Bank



Causal Effect Estimation on Graphs

70

ITE = _  

Wear mask Infection

Treatment Outcome

causes

 



Hidden Confounders on Graphs

❑ The confounders are often unobserved

❑ Even cannot be fully reflected through unit features/covariates

71

Wear mask Infection

Treatment Outcome

causes

Correlation

What if?

Wear mask Infection

Treatment Outcome

causes

Residents’ vigilance

Confounders



Graph as a Proxy for Confounders

72

 

 

 

• Hidden confounders Z  causally affect 
treatment T   and outcome Y

wear face mask

infection

vigilance

• Graph data (node features X  and network 
structure A) can be used as proxy variables 
for hidden confounders Z  

 

 

  

 

wear face mask

infection

vigilanceweb 
searches

physical 
contact

Motivation of Introducing Graph: similar nodes are connected 
more often than dissimilar nodes (homophily)



Key Idea of Leveraging Graph

73

❑ Motivation: Hidden confounders often lead to biased causal effect estimation

❑ Key idea: Capture hidden confounders through representation learning from 
graph data

Confounder 
representations

ITE = _

Graph data can be proxy 
variables for hidden confounders

Effective deep learning 
techniques are utilized

Estimate ITE based on 
confounder 
representations

  



Problem Definition

74

Potential outcome for 
treatment=1

Features
Graph structure

 
 

 



Network Deconfounder

75

1. Learning latent 
confounders with 

GNN

2. Outcome inference with fully 
connected layers

3. Balancing the latent 
confounder distributions of the 

treated and the controlled

 

 

 

 

[1] Guo, Ruocheng, et al. "Learning individual causal effects from networked observational data." WSDM. 2020.



Network Deconfounder
❑ Learn latent confounders with observed features and graph information 

through graph neural networks (GNNs)

76

 

 

 
 

 

[1] Guo, Ruocheng, et al. "Learning individual causal effects from networked observational data." WSDM. 2020.



Network Deconfounder

❑ Build a counterfactual outcome inference model with the supervision of 
observed factual outcomes and the representations of confounders

77

Minimize the Mean 
Squared Error on factual 

outcomes

 

Inferred potential 
outcome

 

Outcome inference 
function

 

Fully connected layers 
for regression

 

 

[1] Guo, Ruocheng, et al. "Learning individual causal effects from networked observational data." WSDM. 2020.



Network Deconfounder

❑ Minimizing the error in the factual outcomes 
does not necessarily mean that the error in the 
counterfactual outcomes is also minimized

❑ Confront the challenge of distribution shift 

78

Solution: representation balancing for distribution shift

 

 

 

integral probability metric (IPM) Wasserstein-1 distance

  

[1] Guo, Ruocheng, et al. "Learning individual causal effects from networked observational data." WSDM. 2020.



Network Deconfounder

79

 
• Confounder representation learning

GCN layers

  
distribution of confounder representations

• Representation balancing
• Help reduce the biases in ITE estimation

Wasserstein-1 
distance

Loss function

Outcome prediction loss

balancing

regularization

• Outcome prediction

[1] Guo, Ruocheng, et al. "Learning individual causal effects from networked observational data." WSDM. 2020.



Experiments

80

❑ Real-world social network BlogCatalog (node=user, edge=friendship)
❑ Simulated causal problem

■ Treatment: A user has more viewers from mobile devices (T=1) or desktops (T=0) 
■ Outcome: the reviews a user receives
■ Confounder: user’s post topics

The smaller, the better
Controls the influence 
of neighbors on each 
node’s confounders 



Hidden Confounders in Dynamic Graphs
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Time
t t+1

• Historical data (previous 
confounders Z t , treatment T t , 
outcome Y t ) can influence 
current confounders Z t+1;

Dynamic environment

Static environment

• Graph data (node features X  

and network structure A) can 
be used as proxy variables for 
hidden confounders Z  
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Problem Definition
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Potential outcome for 
treatment=1

 

Features
Graph structure Historical data

 



Deconfounding in Dynamic Network (DNDC)

83
Dynamic graphs Confounder representations

[1] Jing Ma, et al. Deconfounding with Networked Observational Data in a Dynamic Environment. WSDM 2021



Deconfounding in Dynamic Network (DNDC)
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History 
embedding

Graph 
structure

Graph neural 
network

 

• Prediction for potential outcomes and treatment

ITE = _

• Confounder representation learning

 outcome prediction loss
treatment prediction loss
balancing loss

• Overall loss

[1] Jing Ma, et al. Deconfounding with Networked Observational Data in a Dynamic Environment. WSDM 2021



Experiments
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The smaller, 
the better

 

 



Evaluation: A Case Study on COVID-19 Policies

❑ The outbreak of COVID-19 has been affecting public health since 2019

❑ Various non-pharmaceutical public policies have been announced to limit 
impact of COVID-19 across the US (e.g., social distancing, mask requirement, 
travel restrictions)

86



Evaluation: A Case Study on COVID-19 Policies

❑ To help future policy makers, a natural question is: which policy is more 
effective to control the impact of COVID-19 in a given context?

❑  Specifically, we study the causal effect of different public policies (treatment) 
on the outbreak dynamics (outcome)

87



Data Collection: An Overview 

❑To study causal effects, we take each county as a 
unit, and collect:
■Treatment:  Whether a certain policy is in effect (1 or 0) in different 
counties.
■Outcome: The number of confirmed cases and death cases in 
different counties.

❑To control for unobserved confounders, we collect
■Features (covariates): data that reflect confounders (e.g., residents’ 
vigilance) in counties – web searches
■Graphs: relational information among counties, e.g., distance 
network/mobility flow
■We assume these features and networks are correlated with the 
unobserved confounders

88



Assess Causal Effects of COVID-19 Policies

89

Observations:
• The causal effect estimation is consistent with epidemiological literature
• The estimation results can bring more insights for future decision making 

a) Social distance b) Reopening

time

Better for reducing the spread of 
COVID-19

No causal effect
More harmful for reducing the spread 
of COVID-19

[1] Jing Ma, et al. Assessing the Causal Impact of COVID-19 Related Policies on Outbreak Dynamics: A Case Study in the US. WWW 2022



Graph Interference

❑ Interference: the treatment of an individual may causally affect the 
outcome of other individuals
■ Example: whether a person wears a face mask in public may 

influence the infection risk of other people
❑ Traditional causal inference assumes interference does not exist, but 

interference is ubiquitous in networked data

90

Wear mask Infectio
nTreatment Outcome

causes



Hypergraph and High-order Interference

❑ In hypergraphs, each hyperedge can connect an arbitrary number of nodes, in 
contrast to an ordinary edge which connects exactly two nodes

❑ Example of high-order interference: The interaction between 𝑢2 and 𝑢3 may 
also influence the exposure of the virus to 𝑢1; i.e., 𝑢2 × 𝑢3 → 𝑢1
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Ordinary graph Hypergraph

[1] Jing Ma, et al. Learning Causal Effects on Hypergraphs. KDD 2022



Causal Inference under Interference

 

92

Treatment of other nodesPotential outcome when Ti=1 or Ti=0



Assumptions

 

93
Theory (Identifiability): the defined ITE can be identifiable from observational data 
under the assumptions

Assumption 1: (Unconfoundedness) no unobserved confounders exist

Assumption 2: (Expressiveness of summary function)

a function which characterizes all the 
“environmental” information related to node i.



Learning Causal Effects on Hypergraph
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Input hypergraph

[1] Jing Ma, et al. Learning Causal Effects on Hypergraphs. KDD 2022



Learning Causal Effects on Hypergraph
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[1] Jing Ma, et al. Learning Causal Effects on Hypergraphs. KDD 2022

Confounder representation learning: encode the node features 
into a latent space to capture the confounders

Assumption 2 (Expressiveness of summary function)



Learning Causal Effects on Hypergraph
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[1] Jing Ma, et al. Learning Causal Effects on Hypergraphs. KDD 2022

Interference Modeling: capture the high-order interference for each 
individual through representation learning
• Propagate the neighboring treatment assignment and confounder 

representations with a hypergraph module
Assumption 2 (Expressiveness of summary function)



Learning Causal Effects on Hypergraph
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[1] Jing Ma, et al. Learning Causal Effects on Hypergraphs. KDD 2022

Interference Modeling: capture the high-order interference for each 
individual through representation learning
• Hypergraph convolutional network is applied in the hypergraph module:

vanilla Laplacian matrix for the hypergraph 



Learning Causal Effects on Hypergraph
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Interference Modeling: capture the high-order interference for each 
individual through representation learning

• Modeling interference with different significance
○ E.g., active individuals may be more likely to influence or be influenced by 

others
• Attention mechanism in hypergraph module



Learning Causal Effects on Hypergraph
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[1] Jing Ma, et al. Learning Causal Effects on Hypergraphs. KDD 2022

Outcome Prediction: predict the potential outcomes based on learned 
representations

Outcome prediction loss Balancing loss

Model parameter 
regularization



Experiments

• Dataset: real-world contact hypergraph

• node=person, hyperedge=physical contact

• Simulation: treatment=wear face mask, outcome=COVID-19 infection

100
Our method

The smaller,
The betterNo graph

Projected 
graph

Outcome simulation 
settings

HyperSCI outperforms 
all the baselines
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Explanation in ML
❑ Human-understandable explanations for machine learning are advantageous 

in several ways 

102

• Feature importance: An explanation can be 
beneficial to the applicant, e.g., helps an applicant 
understand which of their attributes were important 
in decision. 

• Fairness: it can help an applicant challenge a 
decision if they feel unfair 

• Action: an explanation provides the applicant with 
feedback that they can act upon for better outcome 
in the future.

• Model improvement: Explanations can help the 
model developers find bugs and improve the 
model.



Counterfactual Explanation

❑ Counterfactual explanation (CFE) [1]  is a causality-related explanation strategy, 

which promotes model explainability by answering the key question

❑ CFE can be particularly useful when it is not possible to directly observe or 

manipulate the factors of interest

How to make small perturbations for a specific 
instance to get a desired prediction from the model?

Work experience: N/A Work experience: 5 years

Original Counterfactual 

[1] Verma, Sahil, et al. "Counterfactual explanations for machine learning: A review." arXiv preprint (2020).



Desiderata of Counterfactual Explanation

❑ Validity: generated counterfactuals have desired labels [1] 

❑ Actionability: which features are mutable 

■ E.g., “race”, “country of region” are immutable

■ Some papers incorporate a preference order of features

❑ Sparsity: a counterfactual ideally should change smaller number of features in order to be most 

effective 

Original objective

Differentiable, unconstrained objective

Desired label

Distance (e.g., L1/L2)

Set of actionable features

[1] Wachter S, et al. Counterfactual explanations without opening the black box: Automated decisions and the GDPR[J]. Harv. JL & Tech., 2017, 31: 841.



Desiderata of Counterfactual Explanation

❑ Data Manifold closeness: a generated counterfactual is realistic in the sense 

that it is near the training data 

■ include a penalty for adhering to the data manifold defined by the training set 

training set 

Figure [1]: Two counterfactuals (shown in red and green) 
are valid for the original datapoint (in blue). The red path 
is the shortest, whereas the green path adheres closely to 
the manifold of the training data. 

[1] Verma, Sahil, et al. "Counterfactual explanations for machine learning: A review." arXiv preprint (2020).



Desiderata of Counterfactual Explanation

❑ Causality: changing one feature in the real world affects other features 

■ E.g., getting a new educational degree necessitates increases in the age 

[1] Mahajan D, Tan C, Sharma A. Preserving causal constraints in counterfactual explanations for machine learning classifiers[J]. NIPS Workshop, 2019.

Structural equation in causal model



Evaluation of Counterfactual Explanation

❑ Commonly used datasets 

■ Image - MNIST

■ Tabular - Adult income, German credit, Compas recidivism, etc.

■ Graphs – motifs, molecular graphs

❑ Metrics

■ Validity: the ratio of the counterfactuals that have the desired class label to the total number of 

counterfactuals. 

■ Proximity: the distance of a counterfactual from the input datapoint.

■ Sparsity: the number of modified features 

■ Diversity: diversity is encouraged by maximizing the distance between the multiple counterfactuals

■ Causal constraint: whether the counterfactuals satisfy the causal relation between features 



Counterfactual Explanation on Graph

❑ Counterfactual explanations for graphs: the minimal perturbation to the input 

(graph) data such that the prediction changes

❑ Motivation & applications:

■ Drug discovery: CFE can help identify the minimal change one should 

make to a molecule with a desired property

■ Career plan: optimize professional network for better career outcome



Counterfactual Explanation for Node Classification

❑ CF-GNNExplainer [1]

■ based on GNN models

■ focus on node classification task

■ focus on perturbing graph structure

❑ Main idea of the method

■ iteratively remove edges (learn a perturbation matrix) from the original adjacency 

matrix based on matrix sparsification techniques 

■ track of the perturbations that lead to a change in prediction 

■ return the perturbation with the smallest change w.r.t. the number of edges

[1] Lucic A, ter Hoeve M, Tolomei G, et al. CF-GNNExplainer: Counterfactual Explanations for Graph Neural Networks, AISTATS 2021.

Original data 
for a node

Counterfactual 
data for the node 

Prediction model

CFE generator
Element-wise 

difference



Counterfactual Explanation for Graph Classification

❑  

 
Original graph

×

 √ 

 
 

Same prediction
model

Slightly change the graph

 
Get a desired outcome

Counterfactual 



CLEAR: Graph Counterfactual Explanation

❑ CLEAR [1]: Model-agnostic, focus on graph classification task

❑ Use a graph-VAE based framework to enable optimization and generalization on graph 

data, promote the causality of CFEs with an auxiliary variable S

[1] Ma, Jing, et al. “CLEAR: Generative Counterfactual Explanations on Graphs.” NeurIPS 2022.



Fairness in ML

❑ Discrimination widely exists in the training data and algorithms of ML, leading 

to biases in ML predictions

❑ It is important to be aware of these potential sources of discrimination in 

machine learning and take steps to address them



Fairness in ML

❑ Fairness in ML: a model should treat all individuals or groups equally without 

discrimination based on sensitive attributes like race, gender, religion, …

❑ Fairness in ML is progressing at an astounding rate in recent years! 

113
Figure [1]: Number of Papers related to Fairness in ML research

[1] Caton, Simon, and Christian Haas. "Fairness in machine learning: A survey."

 Prediction

ML model

Features



Fairness Notions

114

114

The prediction should be 
statistically independent with 
the sensitive attribute!

The predictions for similar 
individuals should be 
similar!

The prediction should not be 
influenced by the sensitive 
attribute from a causal 
perspective!

How to define and improve fairness 
in ML?



Fairness Notions
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115

The prediction should be 
statistically independent with 
the sensitive attribute!

The predictions for similar 
individuals should be 
similar!

The prediction should not be 
influenced by the sensitive 
attribute from a causal 
perspective!

Group 
Fairness

Causality-based 
Fairness

Individual 
Fairness

Fairness can be defined 
in many different ways!



Fairness Notions

❑ Fairness Through Unawareness (FTU): sensitive features are not explicitly 

used in the decision-making process. 

■ Limitation: non-sensitive features may also be biased

❑ Equality of Opportunity: the positive rate are enforced to be the same 

between demographic subgroups conditional on the positive ground truth 

class labels.

■ Limitation: the class label Y may also be biased

116



Causality-based Fairness

❑ Compared with other fairness notions, causality-based fairness can explicitly 

model how discriminations would happen, and how to identify, track, and 

eliminate them

117

• Discrimination is spreading 
through the causal pathways

• Descendants of the sensitive 
feature in the causal graph can 
also be biased

Task: grade prediction for students

S

LSAT

knowledge 

Y

Sensitive 
feature

U 

grade

X

race



Counterfactual Fairness

❑  

118

The value of the prediction if 𝑆 had been set to 𝑠 (𝑠’)
Notice: other features may change correspondingly.

Features Sensitive attribute

  

[1] Kusner, Matt J., et al. “Counterfactual fairness.” NIPS 2017.

A fair predictor should give 
the same prediction for an 
individual even if this 
individual had a different 
race/gender/…

S

knowledge 

Y

Sensitive 
feature

U 
grade

X

race LSAT



Counterfactual Fairness

❑  
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S

LSAT

knowledge 

Y

Sensitive 
feature

U 

grade

X

race

[1] Kusner, Matt J., et al. “Counterfactual fairness.” NIPS 2017.

 

Non-descendants of S



Evaluation of Counterfactual Fairness

❑ Fit the parameters of causal model using the observed data 

❑ Generate samples with counterfactual sensitive feature values

❑ Compare the predictions for the original and counterfactual data 

120

If a predictor is counterfactually fair => the 
distributions of these two predictions would be 
similar

[1] Kusner, Matt J., et al. “Counterfactual fairness.” NIPS 2017.



Counterfactual Fairness on Graphs

❑ In graphs, the sensitive attributes of each node’s neighbors may causally 

affect the prediction w.r.t. this node (red dashed edges); 

121

Flip the value of 
sensitive attribute



Counterfactual Fairness on Graphs

❑  

122

Node features Graph 
structure

Sensitive featuresNode representation for 
node i after intervention 
on S with value s’

[1] Ma, Jing, et al. "Learning fair node representations with graph counterfactual fairness." WSDM 2022.



GEAR: Graph Counterfactual Fairness

123[1] Ma, Jing, et al. "Learning fair node representations with graph counterfactual fairness." WSDM 2022.

1. Subgraph generation: split the input big graph 
into small subgraphs for each centroid node for 
better efficiency

Graph Subgraph

2. Counterfactual (CF) augmentation: generate 

CFs for each subgraph with perturbation on 

sensitive features of different nodes

Subgraph

change the value of 
sensitive features

Original Counterfactual

3. Fair representation learning: learn 
fair representations which elicit the same 
predicted label across different CFs w.r.t. 
the same node

123
Fairness loss: Encourage the node 
representations learned from the original 
graph and CFs to be the same
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Applications

125

Ca
us

al
 In

fe
re

nc
e Decision Evaluation

Selection Bias Handling

Counterfactual Estimation



Decision Evaluation: Risk Prediction

❑ Always unable to produce trustworthy results on risk prediction tasks:
■ A lack of interpretability
■ No insight into cause relationships
■ Low precision and recall

126



Decision Evaluation: Risk Prediction

❑ Without figuring out the true causal features, it is challenging to produce trustworthy predictions with 

high recall and precision in the risk prediction task

❑ Task-Driven Causal Feature Distillation model (TDCFD) 

■ Incorporate the Potential Outcome Framework (POF) to model explanation. 

■ Distill the task-driven causal feature attributions from the original feature values

○ Represent how much contribution each feature makes to this specific risk prediction task

■ Train on distilled causal feature attributions

127



Decision Evaluation: Risk Prediction Explanations

❑ The causal response curve provides the expectation of outcome across a specific feature

❑ Observe the causal effect of feature changes on the outcome result

■ Directly applied to business decision-making, precise medication guidance, or other scenarios 

requiring actionable justification

■ Users do not have to repeatedly change their models to find the best combination of feature 

inputs.  Can directly find out the optimal point for each feature

128



Decision Evaluation: Risk Prediction Explanations

❑ The causal feature importance clearly illustrates the importance of features 

■ Based on real causal relationships rather than spurious correlations

■ Help people understand the underlying data (traditional XAI based on underlying model 

cannot work)

129



Decision Evaluation: Risk Prediction Explanations

❑ Individual prediction result explanations summarize the top-K important features 

■ Explain why the model can produce this outcome

❑ Mean of causal feature attribution in positive and negative samples can be treated as the threshold 

of their contributions to the outcome

130



Decision Evaluation: Online Advertising

131

   Will the ad attract user clicks?

  Will a campaign increase sales?

Randomized experiments 
such as A/B testing? 

Estimating the ad effect from observational data!

Time-consuming and Expensive



Decision Evaluation: Online Advertising

132

Observational  
data

Logged feedback records under 
current advertising system’s policy

❑ Online Advertising as Causal Inference: 

     Estimating the ad effect from observational data

Treatment W Outcome Y Variable X

Ads Click Ad content



Selection Bias Handling: Recommendation

133

Recommendation 
System

Recommends an item
User

Applies a specific treatment
Unit

Selection bias: 

❏ Users tend to rate the items that they like: 
❏ The horror movie ratings are mostly made by horror movie fans and 

less by romantics movie fans.
❏ The records in the datasets are not representative of the whole population.



Selection Bias Handling: Recommendation
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Recommendation 
System

Recommends an item
User

Applies a specific treatment
Unit

Non-displayed item

No enough data

Less recommended



Counterfactual Estimation: Education

135

What would happen if the teacher 
adopted another teaching method? 

Teachers can find the best teaching method for each individual!



Potential Direction: Perspective of Treatment

� Multiple treatments: 

         Each treatment has different levels.

� Continuous treatments: 

        Treatment can take values from a continuous range. 

� Structural treatments 

Units can take structural treatments like images or texts

� Causal interaction: 

        Identifying the effect of combinations of treatments.

136



Potential Direction: Evaluation

137

For real-world applications, 
how can we evaluate the 
performance of different 
causal inference methods?



Potential Direction: Data Fusion

138

A large set of logged 
feedback records under 
current system

A small set of records 
under the randomized 
experiments ❑ Unobserved confounders

❑ Non-displayed items

❑ Improve existing methods

❑ ... ...Observational 
Data

Experimental 
Data



Potential Direction: Connecting Other Areas

139

Representation Learning based Causal Inference

Statistical Sampling 

Causal Reinforcement Learning

Transfer Learning 



Potential Direction: Continual Causality

140

Continual Learning + Causality



Potential Direction: Causal Federated Learning 

141

Federated Learning + Causality

Sreya Francis, Irene Tenison, Irina Rish, Towards Causal Federated Learning For Enhanced Robustness and Privacy, ICLR Workshop, 2021.
Han L, Hou J, Cho K, Duan R, Cai T., Federated Adaptive Causal Estimation (FACE) of Target Treatment Effects. 2022.
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Resources

❑ Causal Effect Estimation: Recent Advances, Challenges, and Opportunities
■ https://arxiv.org/abs/2302.00848 

❑ Learning Causality with Graphs, AI Magazine
■ https://onlinelibrary.wiley.com/doi/full/10.1002/aaai.12070

❑ Continual Treatment Effect Estimation: Challenges and Opportunities
■ https://arxiv.org/pdf/2301.01026.pdf

❑ Causal Inference in Recommender Systems: A Survey of Strategies for Bias Mitigation, Explanation, and 
Generalization 

■ https://arxiv.org/pdf/2301.00910.pdf
❑ A Survey on Causal Inference 

■ https://arxiv.org/abs/2002.02770 
❑ A Survey of Learning Causality with Data: Problems and Methods, ACM Computing Surveys, 2020

■  https://arxiv.org/pdf/1809.09337.pdf
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https://arxiv.org/pdf/2301.00910.pdf
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