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O Causality

U Causality is also referred to as “causation”, or “cause and effect”
d Causality has been extensively discussed in many fields, such as statistics,
philosophy, psychology, economics, education, and health care.

Cause| [Effect

A 4
/ ’/ / ¥ Y
) ! / ;

/ /1 g
Why? What?
It started Ineeded an
raining. umbrella.

Figure:


https://www.pinterest.com/pin/195906652514487365/

o Correlation and Causation

A Correlation does not imply causation

A For two correlated events A and B, the possible relations might be: (1) A
causes B, (2) B causes A, (3) A and B are consequences of a common cause,
but do not cause each other, etc.
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1 Example of (3): As ice cream sales increase, the rate of drowning deaths

increases sharply. The two events are correlated. However, increasing ice
cream consumption and drowning deaths may not have causal relationships. I



o Causal Inference

A Causal inference is the process of drawing a conclusion about a causal
connection based on the conditions of the occurrence of an effect
A Two major tasks in causal inference
o Treatment Effect Estimation (This Tutorial): estimate the causal effects
of an intervention on subjects, e.g., the effects of medication
o Causal Discovery: infer causal structure from data, i.e., finding causal

relations among variables
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O Experimental Study vs. Observational Study

d Experimental Study

o Randomized Controlled Trial (RCT) ) '

o Assignment of control/treated is random = =

o Gold-standard for studying causal relationships = =

o Expensive and time-consuming, e.g., A/B testing 12%  36%
0 Observational Study “Winnert

o Assignment is NOT random
o Approaches: structural causal models, potential outcome framework
o Simple, efficient and interpretable, e.g., nearest neighbor matching
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o About This Tutorial

A Causal inference is an active research area with many research topics, this
tutorial mainly focuses on the potential outcome framework in observational
study

A Machine learning could assist causal inference at different stages. In this
tutorial, we focus on how to design representation learning methods and
graph neural networks for causal inference. Moreover, we will discuss
causality-aided machine learning.




o About This Tutorial

d Schedule
o 8:30 AM-9:15 AM: Background on Causal Inference (S. Li)
o 9:15AM-10:00 AM: Representation Learning based Methods (Z. Chu)
o 10:00 AM - 10:30 AM: Coffee Break
o 10:30 AM-11:10 AM: Graph Neural Networks based Methods (J. Li)
o 11:10 AM - 11:40 AM: Causality-aided Machine Learning (J. Ma)
o 11:40 AM - 12:00 AM: Applications, Future Directions, and Closing Remarks (S. Li)

A Website: https://aaai23causalinference.qgithub.io/
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O Causal Inference Paradigms

d Graphical Causal Models X5 X2
o Causal graphs are probabilistic graphical models to encode \ ,/
assumptions about data-generating process [Pear!, 2009] X4 X3
o Related approach: structural equation modeling (SEM) /
O Potential Outcome Framework il I
o An approach to the statistical analysis of cause and effect /

Y

based on the potential outcomes [Rubin, 2005]

o Also known as Rubin causal model (RCM), or Neyman—Rubin An Example of
Causal Graph

causal model

[Pearl, 2009] Judea Pearl. Causality. Cambridge University Press, 2009.
[Rubin, 2005] Donald Rubin. Causal inference using potential outcomes. Journal of the American Statistical Association, 2005.



O Potential Outcome Framework (1)

@ Unit: A unit is the atomic research object in the causal study

A Treatment: An action that applies to a unit
In the binary treatment case (i.e., W =0 or 1), freated group contains units
received treatment W = 1, while control group contains units received
treatment W =0

@ Outcome: response of units after treatment/control, denoted as Y

A Treatment Effect: The change of outcome when applying the different
treatments on the units
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An lllustrative Example

Task: Evaluate the treatment effects of several different medications for one
disease, by exploiting the observational data, such as the electronic health
records (EHR)

Observational data may include: (1) demographic information of patients,
(2) specific medication with the specific dosage taken by patients, and (3) the
outcome of medical tests

Units: patients

Treatments: different medications

Outcome: recovery, blood test results, or others

Y.



O Potential Outcome Framework (2)

A Potential Outcome: For each unit-treatment pair, the outcome of that

treatment when applied on that unit is the potential outcome. Y(W=w)
A Observed Outcome: Outcome of treatment that is actually applied. In binary

case,
[ Counterfactual Outcome: Potential outcome of the treatments that the unit
had not taken. In binary case,
[ Aunit can only take one treatment. Thus, counterfactual outcomes are not
observed, leading to the well-known “missing data” problem

Y.



O

Potential Outcome Framework (3)

Treatment Effects can be defined at the population, treated group, subgroup
and individual levels
Population Level. Average Treatment Effect (ATE)
ATE=E[Y(W =1) = Y(W = 0)]
Treated group: Average Treatment Effect on the Treated Group (ATT)
ATT = E[Y(W = 1)|W = 1] — E[Y(W = 0)|W = 1]
Subgroup: Conditional Average Treatment Effect (CATE)
CATE = E[Y(W = 1)|X = z] — E[Y(W = 0)|X = z]

Individual: Individual Treatment Effect (ITE)
ITE; =Y;(W =1) - Y;(W =0)




o Assumptions

@ Assumption 1: Stable Unit Treatment Value Assumption (SUTVA)
The potential outcomes for any unit do not vary with the treatment assigned
to other units, and, for each unit, there are no different forms or versions of
each treatment level, which lead to different potential outcomes.
d  This assumption emphasizes that:
o Independence of each unit, i.e., there are no interactions between
units. In our example, one patient's outcome will not affect other patients'
outcomes
o Single version for each treatment. For instance, one medicine with
different dosages are different treatments under the SUTVA assumption/



o Assumptions

A Assumption 2: Ignorability
Given the background variable, X, treatment assignment W is independent of

the potential outcomes, i.e., W L Y(W =0),Y(W = 1)|X
A Following our example, this assumption implies that:
o If two patients have the same background variable X, their potential
outcome should be the same whatever the treatment assignment is.
o Analogously, if two patients have the same background variable value,
their treatment assignment mechanism should be same whatever the

Y.

value of potential outcomes they have
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Assumptions

Assumption 3: Positivity
For any set of values of X, treatment assignment is not deterministic:

PW=w|lX=X)>0 VYwand z.
If treatment assignment for some values of X is deterministic, the outcomes
of at least one treatment could never be observed. It would be unable and
meaningless to estimate causal effects
It implies “common support” or “overlap” of treated and control groups
The ignorability and the positivity assumptions together are also called
Strong Ignorability or Strongly Ignorable Treatment Assignment

y.



A Naive Solution

The core problem in causal inference is: how to estimate the average

potential treated/control outcomes over a specific group?

One naive solution is to calculate the difference between the average treated
and control outcomes, i.e.,
- N~ F N¢ F
ATE = Z Y. NC > Y,

1

However, this solution is not reasonable due to the existence of confounders

Y.



o Confounders

@ Confounders: Variables that affect both treatment assignment and outcome

A In the medical example, age is a confounder

A Age would affect the recovery rate
A Age would also affect the treatment choice

Recovery Rate Treatment
Treatment A Treatment B
Age
| Young | 234/270 = 87% | 81/87 =92% | Simpson's paradox
| Older | 55/80 = 69% | 192/263 = 73% due to confounder
| Overall | 289/350 = 83% | 273/350 = 78%

Table 1. An example to show the spurious effect of confounder variable Age.

Yy,



o Selection Bias

A Selection Bias: The distribution of the observed group is not representative to

the group we are interested in
Confounder variables affect units' treatment choices, leading to selection bias

Selection bias makes counterfactual outcome estimation more difficult
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o Classical Causal Inference Methods

A Causal inference has been an active research area in statistics in the past
several decades
A Categorization of Classical Methods
o Re-weighting methods
o Stratification methods
o Matching methods
o Tree-based methods




O Re-weighting Methods

A Challenge of Selection Bias: due to different distributions of treated and
control groups

A Sample re-weighting is a simple way to overcome the selection bias problem

A Key ldea: By assigning appropriate weight to each sample in the observation
dataset, a pseudo-population is created on which the distributions of the
treated group and control group are similar
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O Sample Re-weighting Methods

A Intuition example: Age (Yong/older) as the confounder
o Young people: 75% chance of receiving treatment
o Older people: only a 25% chance of receiving treatment
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http://www.rebeccabarter.com/blog/2017-07-05-ip-weighting/
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Stratification Methods

Stratification adjusts the selection bias by splitting the entire group into
subgroups, where within each subgroup, the treated group and the control
group are similar under some measurements

Stratification is also named as subclassification or blocking

ATE for stratification is estimated as

potrat = S0 (5) [Ya(5) — Yol(j)]

/ j-th block




O Matching Methods

A Matching methods estimate the counterfactuals and meanwhile reduce the
estimation bias brought by the confounders
1 Potential outcomes of the i-th unit estimated by matching are:
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O Propensity Score Matching (PSM)

A Propensity scores denote conditional probability of assignment to a particular
treatment given a vector of observed covariates.
e(x) = Pr(W =1|X = x)
A Based on propensity scores, the distance between two units is
D(xi,x;) = |ei — ¢
d Alternatively, linear propensity score based distance metric
D(x;,x;) = |logit(e;) — logit(e;)]

P. Rosenbaum, and D. Rubin. "The central role of the propensity score in observational studies for causal effects." Biometrika 70.1 (1983): 41-55. /



O

Tree-based Methods

[ Classification And Regression Trees (CART)
A Recursively partition the data space
A Fit a simple prediction model for each partition

A Represent every partitioning as a decision tree
1 Leaf specific effect:

pwlw,x | M =E|Yi(w) | X; € (x| I'IJ\

T(x | M) = p(lx | M) —pw0,x | M)

O
O

O
O © 00
A specific leaf node /Q

P. Rosenbaum, and D. Rubin. "The central role of the propensity score in observational studies for causal effects." Biometrika 70.1 (1983): 41-55. /



o Causal Forest

A Single tree is noisy -> using forest
1 Forests = nearest neighbor methods + adaptive neighborhood metric
[ k-nearest neighbors: seek the k closest points to x according to some
prespecified distance measure
1 Tree-based methods: closeness is defined with respect to a decision tree,

and the closest points to x are those that fall in the same leaf

S. Wager, and S. Athey. "Estimation and inference of heterogeneous treatment effects using random forests." Journal of the American Statistical
Association 113.523 (2018): 1228-1242.



O Why ML is Helpful for Causal Inference?

@ Machine Learning
o Various learning tasks, e.g., regression, classification, clustering
o Various settings: multi-view, multi-task, transfer learning, etc.
o Feature learning by shallow and deep models

@ Connections between Causal Inference and Machine Learning
o Matching in representation space
o Covariate shift and group balancing

o Counterfactual inference could be modeled as a regression problem
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O

Representation Learning based Methods

Traditional treatment effect estimation methods may not well handle large-scale and
high-dimensional heterogeneous data

Advanced machine learning approaches -> extraordinary performance

New topics and new research questions from the core components of the treatment effect

estimation task: Treatment Covariate

m [reatment Observed confounder
....... »

m Covariates e Hidden confounder

Structured (graphs, images, texts)
m Outcome , B

Distribution invariance; Domain
adaptation; Local similarity; Domain
overlap; Mutual information, etc.

Factual outcome
Counterfacutal outcome

Outcome




o Representation Learning

d Deep learning architecture is composed of an input layer, hidden layers, and an output layer
m The output of each intermediate layer can be viewed as a representation of the original
input data
m Ability to deliver high-quality features and enhanced learning performance
m Examples: Feed forward NN, CNN, Auto Encoder, VAE, GAN, efc.

Neural Network Deep Learning
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o Treatment

Q Treatment: How could we deal with different types of treatments?
m (1) Binary
m (2) Multiple
m (3) Continuous scalar treatments
m (4) Interrelated sequential treatments

m (5) Structured treatments (e.g., graphs, images, texts)




O Binary, Multiple, Continuous, Sequential Treatments

Q A unified terminology

Suppose that the observational data contain n units
Each unit goes through one potential path, including
several treatment stages

In each potential path, the unit i can sequentially
choose one of the two or multiple treatments T at
each stage S, and finally, the corresponding outcome
Y could be observed at the end of the path

Let {ti;t,=1,..,n4,i=1,...,n,ands=1,...,n:}

denote the treatment assignment for unit i at stage s

Binary treatments

20!

Response

Sequential treatments

Continuous treatments

‘P1
.pz

N

P1

Treatment

Y.,



O Binary, Multiple, Continuous, Sequential Treatments

m Exist several potential paths

m However, only one of the potential outcomes Binary treatments Sequential treatments @y p,
. . p
is observed at the end of the path according .<. ! .{,<‘ y
to the actual treatment assignments ® - .é Ps
Pa

m This observed outcome is called the factual Multiple treatments ~ Continuous treatments

P1

outcome, and the remaining unobserved

potential outcomes are called counterfactual

outcomes




o Binary Treatments

Qd Motivation
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m Counterfactual inference <-> Domain adaptation
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PP e ° ® o0 Observed control units -> estimate the control outcome of units in the treated group
o O 00 o L Observed treated units -> estimate the treated outcome of units in the control group
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Binary Treatments

Balancing the two groups in the representation space

. o .. ° .;/ °®e .°
Context Representation Outcome error
X () loss(h (D, t),y)
Treatment Imbalance

t disc(D., D;)
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Binary Treatments

For treatment and For treatment group

A Counterfactual Regression control groups

 Objective Function

min
h,®
|®||=1

t ()

Factual loss

1=1

_|_

For control group

L(hy (®),y =Y1)

A FOLhe@)y =10

(JIPM (357,85

~Na

Between treatment
and control groups

Discrepancy
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U. Shalit, F. Johansson, and D. Sontag. "Estimating individual treatment effect: generalization bounds and algorithms." Proceedings of the 34th International Conference on Machine A

Learning (ICML), 2017.



O Multiple Treatments

Q Binary treatment models can be extended to multiple treatment models
m  Augment every sample with its closest matches by propensity score
m Use pairwise discrepancy distance to get balanced representations
m Map to the common wasserstein barycenter

L shared layers L head layers
=ty

~= =0 11171 n
- - _yl
f=k-2 i x~
X ST . il
| _ykl }8
I . o
- — »
t — —
t=k-1|_| ] L k

Schwab, P., Linhardt, L. and Karlen, W., 2018. Perfect match: A simple method for learning representations for counterfactual inference with neural networks. arXiv preprint
arXiv:1810.00656.




O Multiple Treatments

Q Multi-task adversarial learning method
m Outcome generator
m True or false discriminator (TF discriminator)

m These two models are trained together in a zero-sum game

Outcome generator TF discriminator
O O O Cross entropy
O—Oc 00 O—OY 0 &=
r=1 O—0%0%o r=10) 0'80 .
O—0O—0—0 Supen}ise(f‘lloss O
0’30
OO0 8 ’8,.@ O “wy
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Chu, Z., Rathbun, S.L. and Li, S., 2022, April. Multi-task adversarial learning for treatment effect estimation in basket trials. In Conference on Health, Inference, and Learning (pp. 79-91).
PMLR.




o Continuous Treatments

Q Each head layer is assigned a dosage stratum that subdivides the range of potential

dosages into partitions with equal width

input model output

L, baselayers L, treatment layers L, head layers
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5 _y1 ?
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K sub-networks * E sub-networks for each treatment = K*E sub-networks

Schwab, P., Linhardt, L., Bauer, S., Buhmann, J.M. and Karlen, W., 2020, April. Learning counterfactual representations for estimating individual dose-response curves. In Proceedings of
the AAAI Conference on Atrtificial Intelligence (Vol. 34, No. 04, pp. 5612-5619).
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Continuous Treatments

[ Continuity of dose-response curve
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Varying coefficient neural network (VCNet)

[  Neural network with parameter 6(t) instead of a fixed 6

Nie, L., Ye, M., Liu, Q. and Nicolae, D., 2021. Vcnet and functional targeted regularization for learning causal effects of continuous treatments. /ICLR 2021.
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O Sequential Treatments

““online + in person' mode of education delivery

..... > @

<amera on Transcripts
Live video
[BI<T wevideo Sy - @D
""" Online .
....... 5, Camera off Transcripts
[ ) I L
Students ﬂ./ e %o Prerecored VIdeo *
- ., ‘A
In person "A

Transcripts
Transcripts

O There exists the sequential selection bias
Q Selection bias will accumulate and accumulate over multiple stages

Q The estimation of counterfactual outcomes is more challenging




O Sequential Treatments

Q  Totransform the Causal Effect Estimation Framework to the Heterogeneous Graph
m Construct a heterogeneous graph with a large number of sub-graphs
m Each sub-graph represents one unit and all the potential paths

..... > @R
<amera on Transcripts
Live
E< W N A L

Onllne :
Camera off Transcripts
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Sub-graph Type 1 Sub-graph Type 2 Sub-graph Type 3 Sub-graph Type 4




O Sequential Treatments

Q  To preserve all information in observational data and selection bias
m Potential Path Propagation and Completion «—Self-supervised Learning
o Node position classification and Sub-graph type classification (which path is factual path)
O  Toinfer the Potential Outcomes at the end of paths
m  Bidirectional processing based on Directed Acyclic Graph Learning
m Inference the outcome and reconstruct the feature vectors

Directed Acyclic Graph Learning

P11
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Camera on Transcripts Natural Order (=) Potential outcomes
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< Camera O« Self-supervised Learning
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In‘person A @ Transcripts
Transcripts Sub-graph Type Classification

Sub-graph Type 1 Sub-graph Type 2 Sub-graph Type 3 Sub-graph Type 4
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Sequential Treatments

O Real industrial application data
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Figure 5: T-SNE visualizations for the feature distributions of sampled users along different paths. We can observe the significant
bias among different intervention paths, such as in (a) get coupon or not, (b) increase credit limit or not, (c) contact via telephone,

message, or not in the “increase credit limit” group, and (d) contact via telephone, message, or not in the “credit limit unchanged”
group.




o Structured Treatments

Q  Treatments are naturally structured
m  Medical prescriptions (text)
m  Protein structures (graph)
m Computed tomography scans (image)

Q  Extending this idea directly to structured treatments

m Computationally expensive
m  Not be able to make use of treatment features or learn treatment representations

QO  Robinson decomposition a reformulation of the CATE for binary treatments
m Used by the R-learner to construct a plug-in estimator
m Partialling out the confounding of Xon T

Generalized Robinson decomposition (GRD)
Treatments can be vectorized as a continuous embedding
Isolates the causal component of the observed signal by partialling out confounding associations

Kaddour, J., Zhu, Y., Liu, Q., Kusner, M.J. and Silva, R., 2021. Causal effect inference for structured treatments. Advances in Neural Information Processing Systems, 34, pp.24841-24854.




o Covariate

Q Covariate: How could we handle the different types of covariates
m Confounders
m Adjustment variables
m Instrumental variables
m Spurious variables
Q Potential solutions:
m Feature selection

m Feature representation disentanglement




o Covariate

J  Observed variable:
m Pre-treatment variable
m Treatment variable

m Outcome variable

Spurious Adjustment

Instrumental
) emmm et I7eatment Outcome
Variable
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Decomposed latent factors

Wu, A, Kuang, K., Yuan, J., Li, B., Wu, R., Zhu, Q., Zhuang, Y. and Wu, F., 2020. Learning decomposed representation for counterfactual inference. arXiv preprint
arXiv:2006.07040.




O Deep Adaptive Variable Selection Propensity Score

Q  Although including all the confounders is important, this does not mean that including more variables is

better
Q  Conditioning on an instrumental variable
m  Treatment assignment v Remove Want Want
m  Outcome X
m Increase both bias and variance | | Adjustment
Q  Conditioning on an adjustment variable e
m Outcomes v
m Treatment assighment X

m  Unnecessary to remove bias, but can reduce variance
O  Conditioning on spurious (irrelevant) variables i
m  Treatment assignment X

Irrelevant

| Outcomes X Figure 2: The types of observed variables.
m  May introduce more bias into model

O To improve the estimation of propensity score by selecting out confounders and adjustment variables, while
removing instrumental and spurious variables




O Feature Selection

[ Combine the representation learning and variable selection to estimate the propensity score
d  Automatically select confounders and adjustment variables and remove instrumental and
spurious variables
m Outcome prediction with group LASSO
m Propensity score estimation with adaptive group LASSO

Treatment group

Group Lasso Adaptive Group Lasso

Zhixuan Chu, Mechelle Claridy, Jose Cordero, Sheng Li, and Stephen L Rathbun. Estimating propensity scores with deep adaptive variable selection. In Proceedings of the 2023 SIAM
International Conference on Data Mining (SDM), 2023.




O Outcome prediction with group LASSO

Treatment group . L . .
Iy Wy The estimator for outcome prediction with group lasso is thus defined by:

X, O()*O{}*OFO B = angnin {% Z:; €(yi, fo(xi)) + Anq(ﬂ)}, (32

where £(y;, fg(z;)) denotes the log probability density (mass) function of y; given fz(z). The
QY penalty function is

‘ ne np nz ns
I Control group a(B) = Z |1Becoy || + Z [1Bpmy || + Z [1Bil| + Z [1Bss)lls (3.3)
(=il p=I1 =il s=1

Group Lasso

d  Impose a group LASSO penalty -> get the initial weight estimates for each covariate
m Select covariates predictive of the outcome (i.e., confounder and adjustment variables)
m Remove covariates independent of the outcome (i.e., instrumental and spurious variables)




O Propensity score with adaptive group LASSO

QO O
+ »Q Q1 Q
sQQ Q)
=N O O

Adaptive Group Lasso

v

O Adopt a deep neural network with adaptive group LASSO to/stimate the propensity score

Qr

q(a) =

||,§i(1) ||~ and ||ﬂs($) ||~ inflated to infinity, X 7 and X s are removed

Z ||ee(o)l YP‘ |lopp ||
L
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Bl = 1Bus) I

m A penalty function with different regularization strengths
m The weighted penalty is based on initial weight estimates

~

Q  The weights for instrumental and spurious variables are inflated to infinity
Q  While the weights for confounders and adjustment variables are bounded

Y.



Feature Selection

(a) p=0.1, Linear, d=30 (b) p=0.1, Nonlinear, d=30
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Feature Representation Disentanglement

Decompose covariates into three latent factors
m Instrumental factors T
m Confounding factors A
m Adjustment factors T
Random variable X follows an unknown joint probability distribution Pr( X | T, A, T°)
Treatment T follows Pr( T | T, A)
Outcome Y follows Pr(Y| A, T7) @

Selection bias is induced by factorsI" and A G e g)

Hassanpour, N. and Greiner, R., 2020. Learning disentangled representations for counterfactual regression. In International Conference on Learning Representations.




O Objective Function

FACTUAL Loss: L[ y, ht(A(z), Y(z)) ]

®
T ©O@
) & OO

RE-WEIGHTING FUNCTION: w(t, A(z))

IMBALANCE Loss: disc({Y(z:)}i:t;=0, { T (@) }irt;=1

L O 0 C

CRross ENTROPY Loss: —log [ (¢| (), A(z)) |

J(F, A, T, hO, hl, 7T0) = % Zw(ti, A(xz)) i ﬁ[ Yi, hti (A(.’Eq,), T(xz)) ]

+a- diSC({T(mi)}i:ti:O, {T(l’i)}i:ti:l)
+8- 1> [C1og [mo(t T (@), Ae)

+ X Reg(T, A, T, h°, kY, o)

Hassanpour, N. and Greiner, R. Learning disentangled representations for counterfactual regression. In International Conference on Learning Representations (ICLR), 2020. I



O Disentangled Factors

Q New challenges:
m An open problem how to learn the underlying disentangled factors precisely
m Previous methods may fail to obtain independent disentangled factors

d Potential solutions:

m Incorporate MI minimization learning criteria to ensure the independence of these
factors

Y.



o Outcome

d Outcome: When estimating the factual and counterfactual outcomes, how
could we overcome the selection bias among different treatment groups?
m Distribution invariance
m Domain adaptation
m Local similarity
m Domain overlap
m Mutual information
m Andsoon

d Two major concerns !




O Outcome (1)

O Optimal metric to measure the distance between the treatment and control groups
remains unsettled

m Use wasserstein or MMD to reduce distributional distance

m Hard samples to learn representations that preserve local similarity
information

m Use counterfactual variance to measure the domain overlap

m Utilize the mutual information between feature representations and treatment
assignment

Q The choice of distance metrics is highly dependent on
m Characteristics of data distributions
m Hyperparameters of regularization terms for imbalance mitigation

Y.,



O Outcome (1)

Overlap: “green” has greater
counterfactual variance than “red”

Counterfactual variance
§ 8 &8 8§ 3
Counterfactual variance

L s

S5 1o 05 00 05 10 15 20 S5 o 05 00 05 10 15 20
Quantifying discrepancy between treated
and control using counterfactual variance

No consensus among different
metrics in terms of balancing data

01
o1 e \
00, 10 . > g
20 15 -0 05 00 05 10 15 20 005 s -0 =05 00 05 1o 15 20
Quantifying discrepancy between
treated and control using IPM

: - . Discrepancy: “red” has greater
3 wasserstein and MMD than “green”

2 4 6 [ 10

MMD

Wasserstein
g 88 8 8

Zhang, Y., Bellot, A. and Schaar, M., 2020, June. Learning overlapping representations for the estimation of individualized treatment effects. In International Conference on Atrtificial
Intelligence and Statistics (pp. 1005-1014). PMLR.




Outcome (2)

Regularizing representations to be domain-invariant is too strict
m when domains (e.g., treatment and control groups) are partially overlapped

The empirical risk minimization only on factual data outperforms domain-invariant representation
learning algorithms

Therefore, enforcing domain-invariant
m Remove predictive information
m Leadtoalossin predictive power
m Regardless of which type of domain divergence metrics is employed

This is a promising and urgent direction for the treatment effect estimation task
m Avoid the choice dilemma of domain divergence metrics
m Overcome the loss of predictive information




o Another Issue about Potential Outcome Estimation

Q Source-specific and stationary observational data
Assume that all observational data are already available and from the only one

source

Q This assumption is unsubstantial in practice due to two reasons:
Incrementally available from non-stationary data distributions
The realistic consideration of accessibility: too large to store, proprietary,

sensitivity

d  Continual causal inference framework

Extensibility
Adaptability
Accessibility

[owai] [owaz | [owas | [owas | [ouss |

T

i ﬂ ﬂ
(Model l)—o(ModeI 2>—><Model 3>—o Model 4 —»( Model 5

Continual learning on
data 1,2,3,4, and 5

Yy,



Continual Causal Inference with Incremental
Observational Data

Existing strategies to handle the new challenges :
m Directly apply the previously trained model to new observational data (CFR-A);
m Utilize newly available data to fine-tune the previously learned model (CFR-B);
m Store all previous data and combine with new data to re-train the model from
scratch (CFR-C);

CFR-A CFR-B CFR-C

[ Data 1 ] [ Data 2 ] [ Data 1 ] [ Datal + Data?2 ]
Train @ @ ﬂ @ Access to @
all data
( Model 1 ) Cannot Model 1 ( Model 2 ) ( Model 1 Model 2
transfer
Evaluate \\ Catastrophic
v forgetting v v

[ Data 1 ] [ Data 2 ] [ Data 1 ] [ Data 2 ] [ Data 1 ] [ Data 1 I Data 2 ]

Face a memory constraint or a
barrier to accessing previous data




O Continual Causal Inference with Incremental
Observational Data

Herding sampling Feature Representation Distillation

algorithm Lrp(x) = 1= cos(gw, (x), g, (x))
Learning selective representation p
y Xy 2| Ry
Loy, = [[wall3 + lwall; 1 /',\
x Gw, 4’1—»2;7 b1-2( ~ hg,
1 —> Gy (X2) > G (12)) RyR—>| 11.Y2
IPM .l R, proz, | & IPM

Y

Feature Representation Transformation Balancing Global Feature Representation Space

Wass(P, Q) = klgg(/ k(g(x)) = g(x)[IP(g(x))d(g(x))

g(x)

Lrr(x) =1- COS(¢1—>2(9W1 (%)), Gw, (x))

Chu, Z,; Li, R.; Rathbun, S. L.; and Li, S. 2023. Continual Causal Inference with Incremental Observational Data. In The 39th IEEE International Conference on Data Engineering.
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O Graph Data

a Graphs have been extensively used for modeling many real-world
systems with connected units

Knowledge Graph

Social Network

Cooperation Network




O Causal Inference on Graphs

a Causal inference studies the causal relations rather than statistical
dependencies between variables

O Causal effect estimation: assessing the causal effects of a treatment (e.g.,
wearing a mask) on an outcome (e.g., COVID-19 infection)

0 (control) or 1 (treated) A h A Yo
# <7 or Only one of them
@ @ e an AN can be observed!

CoviD-19

Potential outcomes

a Causal effect estimation on graphs L WU
Question: In a contact network, how does the face SN T
mask practice influence COVID-19 infection risk? \N /
2
Us Uy



O Applications of Causal Inference on Graphs

Q Causal inference has a wide range of applications in graph data
2\ b

PEY
— 4> 4>
, Which factors most
How does an ad campaign How does a substructure . . ,
: , : impact the applicant’s
motivate users’ purchase? influence the molecular property? . o
credit application result?




O Causal Effect Estimation on Graphs

Problem definition:
O Given: observational data{X, A, T, Y}

v, & .
- ]
m node features X =
m graph structure A \ \ /
m treatmentT &_%
m observed outcomes Y Us Uy

O Goal: Given a graph, a treatment assignment and the outcome, we aim to
estimate the individual treatment effect (ITE) for each node i:

Wear mask Infection

a A .

AR AR (= causes
ITE=Y1,i — Yy, @ @) — cﬁfw
Treatment

Outcome




O Hidden Confounders on Graphs

d  The confounders are often unobserved

Q Even cannot be fully reflected through unit features/covariates

/ \ / Residents’ vigilance \

Correlation “‘:“; :
Confounders
What if? V 4 \
Infegion _ Infe;iion
" causes ** " causes **
)  coviD-19 )  CcoviD-19
Outcome Qutcome

\_ / o /




O Graph as a Proxy for Confounders

« Hidden confounders Z causally affect « Graph data (node features X and network
treatment T and outcome Y . structure A) can be used as proxy variables
for hidden confounders Z

i wear face mask
vigilance . web wear face mask
searches
: : hysical . .
infection Eor{tact infection

Motivation of Introducing Graph: similar nodes are connected
more often than dissimilar nodes (homophily)

Y.



O Key Idea of Leveraging Graph

L Motivation: Hidden confounders often lead to biased causal effect estimation

Q Key idea: Capture hidden confounders through representation learning from
graph data

e
Uy Uq Us Y

)
A4
- A o AN AR
. i an Confounder @ @
t

ITE=Y;; — Yo,i

<
Uz U.4_
Graph data can be proxy Effective deep learning Estimate ITE based on

variables for hidden confounders techniques are utilized confounder
representations /



o Problem Definition

O Given the observational data {x;, t;, yi,ti}?zl and graph adjacency matrix A

among n instances, the goal is to estimate the ITE for each individual node on
the graph

ITE of node i A/@z/IE[y_il'xTi'A\_lE[yiolxi'A]

Features

Graph structure

Potential outcome for
treatment=1




o Network Deconfounder

2. Outcome inference with fully

confounder distributions of the Balancing Loss
treated and the controlled s s = m om o= om o= =

[1] Guo, Ruocheng, et al. "Learning individual causal effects from networked observational data." WSDM. 2020.

connected layers
.I | ] | ] | ] | ] | ] | ] | ] | ] | ] | ] | ] | ] | ] | ] | ] | ] | ] | ] | ] | ] | ] |} |} |} |} a ’ |} |} |} |} |} | ] | ] | ] | ] n
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. Features " . f "
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GNN . Representation = | « 0 =
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. Network Layel'(S) u sl = # 8 8 =8 B ®H ®H Y
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o Network Deconfounder

 Learn latent confounders with observed features and graph information
through graph neural networks (GNNSs)

- " Fully
" | ‘ . Connected
- Original - P iy
" Feagt;ures ] Vi=1
X; . = ‘7 . A
hi — g(x“A) =g <w Z . ] : > . ﬁa a Repres:fntation : V=0
uekthui VINDIINDI/ - P AT s
: an " Convolutional = Outcomes
~_ 1__ _ 1 — - Structure Laver(s) -
= o ((DzADzX) W) = o((AX);W) i L
i : :
. . . - Observed " .
h;: latent confounder representations of instance i N AR R R R it

W: weight matrix of GCN layer (parameters to be learned)

-~ . . . . o e . -~ o~ 11
A: normalized adjacency matrix with normalization trick, A = D zAD :

A: adjacency matrix of graph with self-loop
[1] Guo, Ruocheng, et al. "Learning individual causal effects from networked observational data." WSDM. 2020.



o Network Deconfounder

 Build a counterfactual outcome inference model with the supervision of
observed factual outcomes and the representations of confounders

n Fully -
o n
Minimize the Mean 1 > [TTT1 /| . CT:;ee?:d .
Squared Error on factual “ mlnz E (ﬁi,ti — Vit ) ;letl:::ls - .
outcomes i=1 T -
Inferred pOtential ‘ ' S — f( (x A) t) ‘: . Repres;ntanon i .
outcome yl'ti 9\ Xi, 't n/“}h e Confounders B InferredI .
rap " Potential =
. «h Convolutional = Outcomes »
Outcome inference fZt) = f1(z) ift; =1 Detwork Layer(s) O
function “ Lo fo(Z) ift; =0 .
i >
Fully connected layers 1 1 1 opserved
— ) Representation
. f]_ =w O'(WL "'G(lei)) Treatment .
for regression “ Balancing Loss

fo=wlo(W ...c(W?Z))

[1] Guo, Ruocheng, et al. "Learning individual causal effects from networked observational data." WSDM. 2020. /



o Network Deconfounder

Q  Minimizing the error in the factual outcomes B
does not necessarily mean that the error in the orgnal -
counterfactual outcomes is also minimized > — I

. . . . ﬁ Representation fo PR

d Confront the challenge of distribution shift B9 o

y. Graph Confounders Potential

Solution: representation balancing for distribution shift el L m
minpz (P, Q) = inf fpeny,, 1K) = RIP(R)dh e : ” :
integral probability metric (IPM) Wasserstein-1 distance S

- K = {k|k:R% > R%,5.t.Q(k(R)) = P(h)} : A

- X the set of push-forward 1-Lipschitz functions that can . A T=1 T=0 |:>

- transform the representation distribution of the treated P (h) :

- to that of the controlled Q(h) -

[1]Guc.), I:{u:)c;e;g,.e': al.. "Le;rn.in;] ir:di:/id.ua.l c:au.sal.e;fec.:ts.fr;m.n(;tvv.orl.(e; o.bs.er\:at;or:al.da.ta.." V.VS.DI\.A .20;0.. T




O

Network Deconfounder

10 ] / . , :
Original Confounder representation learning
Features ‘ M h; = g(x;,A) = 0 ((AX);U)
=, A
‘: Representation GCN layers
e _60 °f Inferred
yZ oS ) Confounders Bolantel _ .
14 .
J 1 -t A Sotential Representation balancing
Network Convolutional * Help reduce the biases in ITE estimation
Structure Layer(s) A
’ T=1 T=0 I:>
Bhserved Repr;semaﬂon distribution of confounder representations
Treatment : Wasserstein-1 PO = i k(h) — h||P(h)dh
Balancing Loss distance pz(P,Q) ;:J;{ e (oo |Ik(h) — hi|P(h)

Loss function

1y,
L(0xi i Hp A) = D
i=1

Outcome prediction

L amyifr=1
flbs 1) = {fo(h,-)ift=o

balancing

—yi)’ +apz(P,Q)+A10I13,

regularization

Outcome prediction loss
[1] Guo, Ruocheng, et al. "Learning individual causal effects from networked observational data." WSDM. 2020.




o Experiments

d Real-world social network BlogCatalog (node=user, edge=friendship)
d Simulated causal problem
m Treatment: A user has more viewers from mobile devices (T=1) or desktops (T=0)

m Outcome: the reviews a user receives | ____ |1 S -ar | | eare =1t Y- Yo
m Confounder: user’s post topics \ " i) " M
Controls the influence BlogCatalog /me smaller, the better
of neighborsoneach | =~ | K2 0.5 1 / 2
node’s confounders m EATE ‘/m EATE m EATE
NetDeconf (ours) 4.532 0.979 4.597 0.984 9.532 2.130
CFR-Wass 10.904 4.257 11.644 5.107 34.848 13.053
CFR-MMD 11.536 4.127 12,352 5.345 34.654 13.785
TARNet 11.570 4.228 13.561 8.170 34.420 13.122
CEVAE 7.481 1.279 10.387 1.998 24.215 5.566
Causal Forest 7.456 1.261 7.805 1.763 19.271 4.050
BART 4.808 2.680 5.770 2.278 11.608 6.418




O Hidden Confounders in Dynamic Graphs

Graph data (node features X

web wear face mask
searches and network structure A) can
be used as proxy variables for
hidden confounders Z
hysical . .
Eoztact infection [ Static environment ]

» Historical data (previous
confounders Z¢, T,
outcome Y?) can influence
current confounders Zt1;

[ Dynamic environment ]
t ! t+1 /




o Problem Definition

O Given the time-evolving networked observational data {X¢, A%, Tt,Y*}} across
P time stamps, the goal is to learn the ITE t} for each instance i at each time
stamp ¢t

t t pat t] _ t |yt at t
TEofnodeiat |.4— E[Yy;|X;, A%, 3] — E[Yg, |Xi, A%, 3¢

time stamp ¢t T \

Features

Historical data

Graph structure

Potential outcome for
treatment=1




O Deconfounding in Dynamic Network (DNDC)

Time _—_—— 1. Confounder Representation Learning 2. Prediction
!/ ; I ¥ -1 \ / 2 A‘r I
t [ S BB e s Representation TN o > Cnin|
Balancing P S 2 L
In::n:.1 - . prediction ? —_—
| T B —
0 H Tt
| o J HOEER~ I s
| X3 e | embedding T yrEE— —>- treatment u -
I L spe attention brediction gradlelnt e
ayer
l\ | GRU layer layer ’
1
|
I 1. Confounder Representation Learning 2. Prediction
|
\ 4 yt+1
t+1 it ZB Y™ e
X3 - H ~ 3. Representation ™~ - > |? P st
t+1 IXt.|.1|:-:|:E| X4y Zt+1 Balancing potential outcome |7
‘ A S prediction ?
. I =}
54 L T 0 gt+1 &
| 1 I graph ——— H -\ H m R Tt+1
jX3"™ " — embedding 7t+1 1l — — U -
I ii H™ == treatment  jient reversal %]
! L yova g “aention prediction FXHer
k— - . l 1 GRU layer layer K /

Dynamic graphs  Confounder representations

[1] Jing Ma, et al. Deconfounding with Networked Observational Data in a Dynamic Environment. WSDM 2021



O Deconfounding in Dynamic Network (DNDC)

| 1. Confounder Representation Learning

» Confounder representation learning . = A B Representation—
Graph neural History Graph e W rz'_t'_'_'_l Balancing
network embedding structure H 22223 , P

Xt corm graph. H -\
" — . 3 embedding Tt H1 -*)H—)
Zi 3 g(([X 'H ])i!A ) k \—D—)Htﬁ/a\tgention
GRU layer ayer
................. T e
» Prediction for potential outcomes and treatment I
ﬁ & otential outeors 2 _L>gt14i:mation
A ) & ot edienon T 2] 1
t _ t Py < " 7
?1,i = f1(Z}) ¥ :> ITE = AN - n— - (o]
- _ |
?t —_— Zt 6 @ @ ;Zgﬁ?g; gradienlJ reversal I I
0,i — fO( l) A layer |
* Overall loss Ly outcome prediction loss

L ={L7 treatment prediction loss
Lp balancing loss

[1] Jing Ma, et al. Deconfounding with Networked Observational Data in a Dynamic Environment. WSDM 2021



O

O Observations:

Experiments

m When A, T, DNDC is better as it leverages historical information

m When A, T, our method is better as it leverages graph information

Epeqe dn Flickr V EpeHe on Flickr
S 'mm cr CEVAE S [ cF CEVAE
I BART NetDeconf ~ N BART NetDeconf
S H I CFR-Wass Il DNDC S F HE CFR-Wass @ DNDC
The smaller, S | mmm CFR-MMD S | mmm CFR-MMD
the better St S
S =
S S
Ay
. J
A, : the influence of historical A, : the influence of graph

information on confounders structure on confounders




O Evaluation: A Case Study on COVID-19 Policies

_ Total cases per Total cases per
million people, in million people, in

thousands ‘\;.;fi thousands

I a4 I

I 15 : - 15

Iu_s ‘ % 125

I 10 I 10
75 I 75

A The outbreak of COVID-19 has been affecting public health since 2019

 Various non-pharmaceutical public policies have been announced to limit
impact of COVID-19 across the US (e.g., social distancing, mask requirement,

travel restrictions) ’



O Evaluation: A Case Study on COVID-19 Policies

. Total cases per _ X . Total cases per
million people, in million people, in

3 thousands thousands

<4
0 4 |
15 15
.. = L.
I 10 I 10
1. ..

d To help future policy makers, a natural question is: which policy is more
effective to control the impact of COVID-19 in a given context?

d  Specifically, we study the causal effect of different public policies (treatment)
on the outbreak dynamics (outcome)

{‘ Q k . } Causation 2000




o Data Collection: An Overview

 To study causal effects, we take each county as a
unit, and collect:

M Treatment: Whether a certain policy is in effect (1 or 0) in different
counties.

M Outcome: The number of confirmed cases and death cases in
different counties.

J To control for unobserved , we collect

: data that reflect confounders (e.g., residents’
vigilance) in counties — web searches

. relational information among counties, e.g., distance
network/mobility flow

Treatment Outome

24

BWe assume these features and networks are correlated with the

unobserved confounders I



O Assess Causal Effects of COVID-19 Policies

More harmful for reducing the spread

No causal effect of COVID-19
N)
S B Phase 2 BN Personal care
§ \o) Entertainment B Food and drink
8 s 8 S mmm Outdoor and recreation
= O =
[} (\? (5} $
ERS ERS
Sws ;?Q State of emergency @ Childcare (K-12) 5 S
§ Nursing homes ~ B Gatherings g
N Food and drink . ) I
S me ||
/ /7 16\ IQv Ié\ (/\? / I IQv Ié\
g § & S & g & & S 9
a) Social distance b) Reopening

Better for reducing the spread of
CoOVID-19 Opservations:
« The causal effect estimation is consistent with epidemiological literature
* The estimation results can bring more insights for future decision making .

[1] Jing Ma, et al. Assessing the Causal Impact of COVID-19 Related Policies on Outbreak Dynamics: A Case Study in the US. WWW 2022




Graph Interference

Interference: the treatment of an individual may causally affect the
outcome of other individuals
m Example: whether a person wears a face mask in public may
influence the infection risk of other people
Traditional causal inference assumes interference does not exist, but
interference is ubiquitous in networked data

Wear mask causes Infe;tio
Treatment wsssp Outcome n "
Nl W s COVID-19
g 6__0

TR/

Us

Y.,



o Hypergraph and High-order Interference

Q In hypergraphs, each hyperedge can connect an arbitrary number of nodes, in
contrast to an ordinary edge which connects exactly two nodes

Ordinary graph \N / Hypergraph
Us Uy

d  Example of high-order interference: The interaction between u, and u, may
also influence the exposure of the virus to u; i.e., u, X u, — u,

1st-order 2"d-order 3rd-order D
[1] Jing Ma, et al. Learning Causal Effects on Hypergraphs. KDD 2022




o Causal Inference under Interference

O Given: observational data {X,H, ,Y}, denoting features, hypergraph,
, and observed outcomes

O Goal: estimate the ITE for each individual (node) i:

7(x;, T—i, X=3, H) = E[|Y}'[- FIX; = x4,[T-i | T—i, X_; = X_;, H = H]
= E[(I).Y(l, is T—l: X—l’ ﬁ? - (I)Y(O, Xia T—i, X—i’ H)]

Potential outcome when T 1or T 0 Treatment of other nodes




o Assumptions

O Assumption 1. For any node i, given the node features X;, the potential outcomes are

independent with the treatment assignment and summary of neighbors

Assumption 1: (Unconfoundedness) no unobserved confounders exist

0 Assumption 2. For any node i, any values of H, X_;, and T_;, if the output of a

summary function o, = SMR(H,T_;, X_;)is determined, then the values of the potential
a function which characterizes all the
“environmental” information related to node /.

outcomes with feature X; are also determined

Assumption 2: (Expressiveness of summary function)

Theory (Identifiability): the defined ITE can be identifiable from observational data
under the assumptions $



O Learning Causal Effects on Hypergraph

X4 Confounder Representation Learning Interference Modeling Outcome Prediction
(m el

X 51

e X5 momX;)  Mrp =iy z Hy}:ieligraph T g

. . ====z) ) m— 7, ‘ 4 Z module
o X3 o 7 3

TT 50

X o oo o X 4 ommmm 7, 4 _ y

8 7 P4 Concat (zZ;, p;)
: i (===
Representation balancing 3 Representation balancing -

Input hypergraph

[1] Jing Ma, et al. Learning Causal Effects on Hypergraphs. KDD 2022



O Learning Causal Effects on Hypergraph

Confounder Representation Learning Interference Modeling Outcome Prediction

|
!

(
oo X1 MLP e Zq

) |:|:|:|:|:|X2 | _z2| ‘
|:|:|:|:|:|X3 I —Z3
EEEI:EIX4 \ —Z4

%

Representation balancing

Confounder representation learning: encode the node features
into a latent space to capture the confounders

z; = MLP(x;)

Assumption 2 (Expressiveness of summary function)

[1] Jing Ma, et al. Learning Causal Effects on Hypergraphs. KDD 2022



O Learning Causal Effects on Hypergraph

Interference Modeling

Hypergraph ____ P1

z4 § z module
3

Z3 sommm

Representation balancing

Interference Modeling: capture the high-order interference for each

individual through representation learning

» Propagate the neighboring treatment assignment and confounder
representations with a hypergraph module

Assumption 2 (Expressiveness of summary function)

[1] Jing Ma, et al. Learning Causal Effects on Hypergraphs. KDD 2022



Learning Causal Effects on Hypergraph

Interference Modeling
Zq Hypergraph
Z dul
’ 4 7., module

Representation balancing

Interference Modeling: capture the high-order interference for each
individual through representation learning

« Hypergraph convolutional network is applied in the hypergraph module:

PU*D) — I eakyReLU (LP(l)w(l+1)) L =D 2gR-gTp-1/2

[1] Jing Ma, et al. Learning Causal Effects on Hypergraphs. KDD 2022 /



Learning Causal Effects on Hypergraph

Interference Modeling
Zq Hypergraph
Z dul
’ 4 7., module

Representation balancing

Interference Modeling: capture the high-order interference for each
individual through representation learning
* Modeling interference with different significance

o E.g., active individuals may be more likely to influence or be influenced by

others
* Attention mechanism in hypergraph module /



O

Learning Causal Effects on Hypergraph

Outcome Prediction

EEEEEITTTT yl
»_
EEEEETTTT
EEEEECTTTT] 50

y
Concat (zZ;, p;)

P
ﬁ

Outcome Prediction: predict the potential outcomes based on learned
representations gt = fi([zillpi), 9 = follzillpi])

L= Z Yi — Z/})z + allp, +A||®||2 . Model parameter
j regularization
/ N\

Outcome prediction loss Balancing loss )
[1] Jing Ma, et al. Learning Causal Effects on Hypergraphs. KDD 2022




O

e Dataset: real-world contact hypergraph

Experiments

* node=person, hyperedge=physical contact

 Simulation: treatment=wear face mask, outcome=COVID-19 infection

No graph—>

Projected
graph

Our method—9>

¥ethod Linear Quadratic
VEPEHE €EATE €PEHE €ATE

LR 22.80 +0.64 21.41+0.74|414.17 +£3.94 192.80 +2.97
CEVAE 19.36 +0.80 8.63 +0.78 | 315.01 +2.53 188.47 +4.27
CFR 25.23 +0.01 18.28 +0.02 | 392.56 +4.33 189.75 +4.80
Netdeconf || 11.11 £0.01 9.22 +0.03 |241.02 +2.32 147.29 +1.04
GNN-HSIC]| 9.38 +0.44 6.91 +0.38 | 114.28 +3.62 81.21 +2.53
GCN-HSIC]| 8.27 +0.41  6.60 +0.48 | 109.57 +3.85 77.75 +3.93
HyperSCI | 5.13 +0.56 4.46 +0.61 | 81.08 +0.37 74.41 +0.42

Outcome simulation
settings

The smaller,
The better

HyperSCI outperforms

all the baselines ’
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O Explanation in ML

O Human-understandable explanations for machine learning are advantageous

in several ways

LOANS

Feature importance: An explanation can be

beneficial to the applicant, e.g., helps an applicant

understand which of their attributes were important

in decision.

e Fairness: it can help an applicant challenge a
decision if they feel unfair

* Action: an explanation provides the applicant with
feedback that they can act upon for better outcome
in the future.

* Model improvement: Explanations can help the

model developers find bugs and improve the

model. M




O Counterfactual Explanation

O Counterfactual explanation (CFE) ! is a causality-related explanation strategy,

which promotes model explainability by answering the key question

How to make small perturbations for a specific
instance to get a desired prediction from the model?

Se

®7:C]) [ Work experience: N/A ] ‘

—
d  CFE can be particularly useful when it is not possible to directly observe or

manipulate the factors of interest
[1] Verma, Sahil, et al. "Counterfactual explanations for machine learning: A review." arXiv preprint (2020). /

[ Work experience: 5 years ]

Original Counterfactual



Desiderata of Counterfactual Explanation

Validity: generated counterfactuals have desired labels Ul

arg min d(x, x") subject to f(x") =|y" — Desired label Original objective

arg min max A(f(x") — y")? +d(x, x") Differentiable, unconstrained objective
x' A

T Distance (e.g., L1/L2)
Actionability: which features are mutable

m E.g, “race”, “country of region” are immutable

W Some papers ir arg min ax A(f(x") —y")? +d(x,x)
x' e
Set of actionable features

Sparsity: a counterfactual ideally should change smaller number of features in order to be most /
1

effeCtlve [1] Wachter S, et al. Counterfactual explanations without opening the black box: Automated decisions and the GDPR[J]. Harv. JL & Tech., 2017, 31: 84



O Desiderata of Counterfactual Explanation

Q Data Manifold closeness: a generated counterfactual is realistic in the sense

that it is near the training data

m include a penalty for adhering to the data manifold defined by the training set

l( x”: X)) training set

Decision boundary

@ ©
________ , / Figure [l: Two counterfactuals (shown in red and green)
""""""""""" ‘, are valid for the original datapoint (in blue). The red path
Bl is the shortest, whereas the green path adheres closely to
_ " Data manifold the manifold of the training data.

/
[1] Verma, Sahil, et al. "Counterfactual explanations for machine learning: A review." arXiv preprint (2020). /



O Desiderata of Counterfactual Explanation

Q Causality: changing one feature in the real world affects other features

m E.g, getting a new educational degree necessitates increases in the age

Classy 0 Class y= 1

-

/ ™ N\ T /O R
% 1/ \XZ/ \Xl/ \XZ/

@ (D

Original Input Counterfactual Example

Standard Proximity Loss: dlst(x3 x3 s
Causal Proximity Loss: dlstﬂxl Xo° ) X3 )

t

Structural equation in causal model
[1] Mahajan D, Tan C, Sharma A. Preserving causal constraints in counterfactual explanations for machine learning classifiers[J]. NIPS Workshop, 2019.



O Evaluation of Counterfactual Explanation

d  Commonly used datasets
B Image - MNIST
B Tabular - Adult income, German credit, Compas recidivism, etc.
B Graphs — motifs, molecular graphs

d Metrics

B Validity: the ratio of the counterfactuals that have the desired class label to the total number of

counterfactuals.

Proximity: the distance of a counterfactual from the input datapoint.
Sparsity: the number of modified features

Diversity: diversity is encouraged by maximizing the distance between the multiple counterfactuals

Causal constraint: whether the counterfactuals satisfy the causal relation between features ’



O Counterfactual Explanation on Graph

d Counterfactual explanations for graphs: the minimal perturbation to the input
(graph) data such that the prediction changes
d Motivation & applications:
m Drug discovery: CFE can help identify the minimal change one should

make to a molecule with a desired property

m Career plan: optimize professional network for better career outcome




O Counterfactual Explanation for Node Classification

- CF_GNNEXplainer o Prediction model
¢
m based on GNN models — = _ =
L= -Lpred [@(0]1|f} g}{ﬁ‘ﬁdzst(va 0),
m focus on node classification task Original data Counterfactual CFE generator \
m focus on perturbing graph structure foranode data for the node E?gﬁent—wise
1Irerence

[ Main idea of the method

m iteratively remove edges (learn a perturbation matrix) from the original adjacency
matrix based on matrix sparsification techniques

m track of the perturbations that lead to a change in prediction

m return the perturbation with the smallest change w.r.t. the number of edges /

[1] Lucic A, ter Hoeve M, Tolomei G, et al. CF-GNNEXxplainer: Counterfactual Explanations for Graph Neural Networks, AISTATS 2021.



O Counterfactual Explanation for Graph Classification

-H Example: a graph ML model f trained for grant application decision-making

Original graph gG)
e @ o e
[—?fi_f —] "

Y f(G) = Reject

Slightly change the graph Same prgdictlon Get a desired outcome
(G - 6°F) mode
Counterfactual ﬂ
[ ====]" —_—. === m )
Ny - [ | ﬂ‘ f(GF) = Approve

g8 fom




O CLEAR: Graph Counterfactual Explanation

O CLEAR : Model-agnostic, focus on graph classification task
d  Use a graph-VAE based framework to enable optimization and generalization on graph

data, promote the causality of CFES with an auxiliary variable S

Original graph (G ) Auxl]lary | Counterfactual (G Gry

varlable S
/5@\ =
pem— Decoder
Z o
Y* _____

f Black box

f(G)=Y o Or '::’ Counterfactual prediction loss (Y*, Y<F) l(]:' Y°F = F(G°F)

O Nodes oo Node features — Edges
@ Inserted nodes mm Perturbed node features — Inserted edges
® Deleted nodes o= Graph representations Deleted edges

[1] Ma, Jing, et al. “CLEAR: Generative Counterfactual Explanations on Graphs.” NeurlPS 2022.



Fairness in ML

Discrimination widely exists in the training data and algorithms of ML, leading
to biases in ML predictions
It is important to be aware of these potential sources of discrimination in

machine learning and take steps to address them

October 11,2018

Amazon Scraps Secret Al Recruiting Engine that
Showed Biases Against Women

Al Research scientists at Amazon uncovered biases against women on
their recruiting machine learning engine

Biases in Machine
Learning Algoirithms

By Roberto Iriondo




o Fairness in ML

Q Fairness in ML: a model should treat all individuals or groups equally without

discrimination based on sensitive attributes like race, gender, religion, ...

Features mmp f mm) Prediction % :>
ML model -

Q Fairness in ML is progressing at an astounding rate in recent years!

2010 2012 2014 2016 2018 2020

©
o
'

(2]
(=]

Publications per Year
N B
o o

Year

Figure ['l: Number of Papers related to Fairness in ML research
[1] Caton, Simon, and Christian Haas. "Fairness in machine learning: A survey."



Fairness Notions

The prediction should not be
influenced by the sensitive
attribute from a causal
perspective!

The prediction should be
statistically independent with
the sensitive attribute!

The predictions for simila
individuals should be
similar!

How to define and improve fairness
in ML?




Fairness Notions

—~C Y\ Y O\
Group Causality-based
Fairness £ Fairness
N ALV ) S O —
— N
Individual |

Fairness

e ———— g




Fairness Notions

Fairness Through Unawareness (FTU): sensitive features are
in the decision-making process.
m Limitation: non-sensitive features may also be biased
Equality of Opportunity: the are enforced to be the same

between demographic subgroups conditional on the

class labels P(Y=18=0Y=1)=PY =1/S=1,Y =1)

m Limitation: the class label Y may also be biased




Causality-based Fairness

Compared with other fairness notions, causality-based fairness can explicitly
model how discriminations would happen, and how to identify, track, and
eliminate them

Task: grade prediction for students

Sensitive = . is spreading
feature through the

e Descendants of the sensitive
feature in the causal graph can
also be

knowledge l




O

Counterfactual Fairness

-4 Prediction ? is counterfactually fair [l if under any features X = x and

sensitive attribute S = s:

?Ses{ Yy X =x85=s) = PYS y||X xS=s

The value of the prediction if S had been set to s (s”)
Notice: other features may change correspondingly.

P

—

race

Sensitive
feature e.@

knowledge

[1] Kusner, Matt J., et al. “Counterfactual fairness.” NIPS 2017.

LSAT

grade

Features Sensitive attribute

A fair predictor should give
the same prediction for an <:>

individual even if this
YS<—S ?5‘(—5/ I

individual had a different
race/gender/...



o Counterfactual Fairness

H FairLearning ']
m Fit the causal model
m Foreach data instance i, Sensitive
feature

compute the unobserved

variables with P(U|X, S)
D' = {s!,x, y!

knowledge

m Train a fair predictor
6 « argming Y;icp L (¥, 9o (UY, L))

Non-descendants of S

[1] Kusner, Matt J., et al. “Counterfactual fairness.” NIPS 2017.



O

Evaluation of Counterfactual Fairness

d Fit the parameters of causal model using the observed data
O Generate samples with counterfactual sensitive feature values

1 Compare the predictions for the original and counterfactual data

black <> white asian <> white mexican <> white female <> male

sity

S i

o If a predictor is counterfactually fair => the
L] distributions of these two predictions would be
5| similar

g

©

s

S s

2

FYA  FYA FYA FYA
[1] Kusner, Matt J., et al. “Counterfactual fairness.” NIPS 2017.



O Counterfactual Fairness on Graphs

Q In graphs, the sensitive attributes of each node’s neighbors may causally

affect the prediction w.r.t. this node (red dashed edges);

} , Flip the value of (E-:'& o =)
. |‘, N sensitive attribute -
('social I [ Emm]
\\ elation)/ /
/
\
g ~

= | TTE




O Counterfactual Fairness on Graphs

4N Graph counterfactual fairness ['l: An encoder Z; = (®(X, A)); satisfies graph
counterfactual fairness if for any node i:

P(Z)s )X =X, A= A) = P((Zfgs X = X]A = A),
PN

N\

Node representation for Sensitive features Node features Graph
node i after intervention structure

on S with value s’

O Example: the prediction for one’s loan application being approved should be the

same regardless this applicant’s and his/her friends’ (connected in a social

network) race information. }

[1] Ma, Jing, et al. "Learning fair node representations with graph counterfactual fairness." WSDM 2022.



O GEAR: Graph Counterfactual Fairness

T ot T T
1. Subgraph generation: split the input big graph J- \. /
into small subgraphs for each centroid node for L. /:? |:> " /
better efficiency e /"' g 1 /
= .1_ e
Graph Subgraph
2. Counterfactual (CF) augmentation: generate 3. Fair representation learning: learn
: : fair representations which elicit the same
CFs for each subgraph with perturbation on predicted label across different CFs w.r.t.

sensitive features of different nodes the same node

’>-/ o | S 2 Ly = o 3 (= A 3]+ M 2)
. 1 /. — v 1 ) b 4

st Fairness loss: Encourage the node
Ol‘lglnal Counterfactual representations learned from the original
graph and CFs to be the same /
[1] Ma, Jing, et al. "Learning fair node representations with graph counterfactual fairness." WSDM 2022.
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Applications




O

Decision Evaluation: Risk Prediction

Q  Always unable to produce trustworthy results on risk prediction tasks:
A lack of interpretability
No insight into cause relationships
Low precision and recall

Insolvency Risk

|
|
|
8‘ - Causality
L 4
/’,
’I

== - Spurlous
' Causality

Activity in Job-

s 8

o0l

Search Apps
(a) Risk prediction model
based on correlation

| EamBerESiE in Job-Search Apps
Truth: Risk (unemployed status)
(b) Prediction: No risk (unchanged activity in Apps)
Recall |

as

/ Unemployed
53
| _%_

=

Unchanged Activity

Causality [ 2
|nTll L

Insolvency Risk

o,
”’
-’
'
’
/’
”’

~“Spurious

Causality

(&)
g/

a=

Employed

— £

Causality § X
—_—

2"
»7 Spurious

Causality

Increased Activity

dEtREio in Job-Search Apps
Truth: No risk (employed status)
(c) Prediction: Risk (increased activity in Apps)
Precision 4,




o Decision Evaluation: Risk Prediction

Q  Without figuring out the true causal features, it is challenging to produce trustworthy predictions with

high recall and precision in the risk prediction task

Q  Task-Driven Causal Feature Distillation model (TDCFD)

m Incorporate the Potential Outcome Framework (POF) to model explanation.

m Distill the task-driven causal feature attributions from the original feature values

o Represent how much contribution each feature makes to this specific risk prediction task

m Train on distilled causal feature attributions

Synthetic data Real corporate risk data
Method Accuracy | Precision | [Recall | Accuracy | Precision ||Recall |
LR 0.92 0.64 0.54 0.83 0.21 0.16
SVM 0.94 0.68 0.65 0.87 0.40 0.27
KNN 0.91 0.55 0.60 0.91 0.62 0.47
RF 0.95 0.72 0.78 0.90 0.60 0.43
XGBoost 0.94 0.67 0.83 0.91 0.61 0.63
DNN 0.95 0.73 0.80 0.93 0.70 0.66
Transformer 0.96 0.77 0.85 0.93 0.71 0.71
TDCFD 0.97 0.82 0.90 0.96 0.86 0.80




O Decision Evaluation: Risk Prediction Explanations

O The causal response curve provides the expectation of outcome across a specific feature

d  Observe the causal effect of feature changes on the outcome result

Directly applied to business decision-making, precise medication guidance, or other scenarios
requiring actionable justification
Users do not have to repeatedly change their models to find the best combination of feature

inputs. Can directly find out the optimal point for each feature

Causal Response Curve for Featuref

Causal Response

Curve for Feature]

060
055 /
s0

Causal Feature Attribution

o
@
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Causal Response Curve for Feature|

Causal Response Curve for Feature|

Causal Feature Attribution
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O Decision Evaluation: Risk Prediction Explanations

Q  The causal feature importance clearly illustrates the importance of features
m Based on real causal relationships rather than spurious correlations
m Help people understand the underlying data (traditional XAl based on underlying model

cannot work)

Causal Feature Importance
o ° s

2 g n
“ |" | | mﬂ““
N 11 m THE
P0PAPIRP DR ROPIPIYPRPHIADDADLORPDOPRLNPRIPPHRRPP PP VNPV QP P PP PR PPPP 7 R @VP PP R P PP PO P PP PRSP PO RGP PP PO ) PP QP L PP S PP P
Feature




Decision Evaluation: Risk Prediction Explanations

Individual prediction result explanations summarize the top-K important features
m Explain why the model can produce this outcome
Mean of causal feature attribution in positive and negative samples can be treated as the threshold

of their contributions to the outcome

006 006
Y %
004 004
a e
w2 _ 02 _
2 2
e 8
¥ 1 = ¢ 2 Z
=2 O Mean of causal feature attribution in negative samples 0 000 E = © Mean of causal feature attribution in negative samples 0 0.00 g
E | Mean of causal feature attribution in positive samples 1 4 § I Mean of causal feature attribution in positive samples 1 g
] o 8 o
¢ 5 g & a g
- -2 F ° -2 &
= L
3 004 7 . 004
3 e a — e

0375 0400 0425 0450 0475 0500 0525 0550 0575 0375 0400 0425 0450 0475 Q500 0525 0550 Q575
Causal Feature Attribution Causal Feature Attribution




‘ Decision Evaluation: Online Advertising

6 Estimating the ad effect from observational data!

Yy,



O Decision Evaluation: Online Advertising

[ Online Advertising as Causal Inference:
Estimating the ad effect from observational data

Observational » Logged feedback records under
data current advertising system’s policy

Treatment W Outcome Y Variable X
f Click \ 4 Ad content )




Selection Bias Handling: Recommendation

Recommends an item

Applies a specific treatment

Recommendation

Selection bias:

A Users tend to rate the items that they like:
[ The horror movie ratings are mostly made by horror movie fans and
less by romantics movie fans.
[ Therecords in the datasets are not representative of the whole population.

Y.,



O Selection Bias Handling: Recommendation

Recommends an item

Applies a specific treatment

Recommendation

No enough data

Non-displayed item Less recommended




o Counterfactual Estimation: Education

What would happen if the teacher
adopted another teaching method?

ﬂ] Teachers can find the best teaching method for each individual! l



o Potential Direction: Perspective of Treatment

0 Multiple treatments:
Each treatment has different levels.
0 Continuous treatments:
Treatment can take values from a continuous range.
0 Structural treatments
Units can take structural treatments like images or texts
0 Causal interaction:

|dentifying the effect of combinations of treatments.




Potential Direction: Evaluation

For real-world applications,
how can we evaluate the
performance of different
causal inference methods?

B

|

Yy,



Experimental
Data

Observational
Data

Potential Direction: Data Fusion

A small set of records
under the randomized
experiments

+

A large set of logged
feedback records under
current system

d Unobserved confounders
[ Non-displayed items

[ Improve existing methods

Y.



O Potential Direction: Connecting Other Areas

T Om@.y =1

—» Environment

- FOLte@)y = 10)
action Reward| |State hy
R¢ St At= ~At=
) (JIPMe (50,55
<«

ROENE fa———— Representation Learning based Causal Inference

Causal Reinforcement Learning / \

p(2) a(2) ﬂ:) R
M/\ < Map;'.. -.....
/ \\ .. . o - o New D.ata.Spa.ce
Statistical Sampling Transfer Learning /




Potential Direction: Continual Causality

Continual Learning + Causality

ContinualCausality Home Bridge Format Call For Participation Papers Program Organizers

Continual Causality

Bridge Program at AAAI 2023 - 7+8th February 2023

THE 37TH AAAI CONFERENCE ON
ARTIFICIAL INTELLIGENCE

FEBRUARY 7-14, 2023 -+ WASHINGTON, DC, USA
WALTER E. WASHINGTON CONVENTION CENTER




O Potential Direction: Causal Federated Learning

Federated Learning + Causality

Community
Hospital

Privacy o ‘ A I
reservin I

P ) Local Model
) - N A
n - n Private Data 4p?® | Vi I
~

Federated Server

Research
Medical Center

Cancer

»' ) Treatment Center @"

'

Privacy g’
i oca ’

m Private Data f I’

o
s~ .ocal
L ) ; o
A

Sreya Francis, Irene Tenison, Irina Rish, Towards Causal Federated Learning For Enhanced Robustness and Privacy, ICLR Workshop, 2021.
Han L, Hou J, Cho K, Duan R, Cai T., Federated Adaptive Causal Estimation (FACE) of Target Treatment Effects. 2022.
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Resources

Causal Effect Estimation: Recent Advances, Challenges, and Opportunities
m https://arxiv.org/abs/2302.00848
Learning Causality with Graphs, Al Magazine
m https:/onlinelibrary.wiley.com/doi/full/10.1002/aaai.12070
Continual Treatment Effect Estimation: Challenges and Opportunities
m https://arxiv.org/pdf/2301.01026.pdf
Causal Inference in Recommender Systems: A Survey of Strategies for Bias Mitigation, Explanation, and

Generalization

m  https:/arxiv.org/pdf/2301.00910.pdf

A Survey on Causal Inference

m  https://arxiv.org/abs/2002.02770

A Survey of Learning Causality with Data: Problems and Methods, ACM Computing Surveys, 2020
m  https://arxiv.org/pdf/1809.09337.pdf

Y.,


https://arxiv.org/abs/2302.00848
https://onlinelibrary.wiley.com/doi/full/10.1002/aaai.12070
https://arxiv.org/pdf/2301.00910.pdf
https://arxiv.org/abs/2002.02770
https://arxiv.org/pdf/1809.09337.pdf

Acknowledgements

7

Aidong Zhang Jing Gao Liuyi Yao Yaliang Li
Professor Associate Professor Research Scientist Research Scientist
University of Virginia Purdue University Alibaba Alibaba

Wei Chu Ruopeng Li Nikos Vlassis Stephen Rathbun
Researcher Researcher Principal Scientist Professor
Ant Group Ant Group Adobe University of Georgia




- -

Thank you!




